Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38675425

RESUMEN

OBJECTIVE: This study evaluated the influence of cannabis and/or cocaine use in human immunodeficiency virus (HIV)- and cytomegalovirus (CMV)-specific T-cell responses of people with HIV (PWH). RESULTS: There was a higher percentage of IL-17-producing HIV-Gag-specific CD8+ T-cells in all drug users than that in PWH non-drug users. Stratifying the drug-user groups, increased percentages of IL-17-producing HIV-Gag-specific CD4+ and CD8+ T-cells were found in PWH cannabis plus cocaine users compared to PWH non-drug users. In response to CMV, there were higher percentage of IL-17-producing CMV-specific CD8+ T-cell in PWH cocaine users than that in PWH non-drug users. Considering all drug users together, there was a higher percentage of SEB-stimulated IL-17-producing CD4+ T-cells than that in PWH non-drug users, whereas cannabis users had higher percentages of IL-17-producing CD4+ T-cells compared to non-drug users. METHODS: Cryopreserved peripheral blood mononuclear cells from 37 PWH undergoing antiretroviral therapy (ART) using cannabis (10), cocaine (7), or cannabis plus cocaine (10) and non-drug users (10) were stimulated with HIV-1 Gag or CMV-pp65 peptide pools, or staphylococcal enterotoxin B (SEB) and evaluated for IFN-γ- and/or IL-17A-producing CD4+ and CD8+ T-cells using flow cytometry. CONCLUSIONS: Cannabis plus cocaine use increased HIV-specific IL-17 producing T-cells and cocaine use increased IL-17 CMV-specific CD8+ T-cell responses which could favor the inflammatory conditions associated with IL-17 overproduction.

2.
Methods Mol Biol ; 2782: 175-188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38622402

RESUMEN

The encounter of T cells with the antigen through the interaction of T cell receptors with peptides and major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells (APCs) can generate effector response and memory T cells. Memory T cells developed following infections or vaccination may persist, leading to the generation of a specific immune response upon reexposure to the same pathogen through rapid clonal proliferation and activation of effector functions. T cell memory subsets can be identified based on the expression of several membrane markers such as CCR7, CD27, and CD45RA. Using fluorescent antibodies against these markers and a flow cytometer, it is possible to perform immunophenotyping via the analysis of cell surface expression of proteins by different subpopulations such as the subsets of naïve, effector, and memory T cells as well as via the analysis of functional markers that further characterize each sample. Intracellular cytokine staining allows for the evaluation of intracellular proteins expressed in T cells in response to antigenic stimulation. This chapter presents the phenotypic and functional characterization of memory T cells after antigenic stimulation, detailing the procedures for identifying intracellular and surface protein markers. Herein, we review and present a reproducible standardized protocol using antibodies for specific markers and applying flow cytometry.


Asunto(s)
Linfocitos T CD8-positivos , Subgrupos de Linfocitos T , Antígenos Comunes de Leucocito/análisis , Citocinas , Biomarcadores , Linfocitos T CD4-Positivos , Memoria Inmunológica , Inmunofenotipificación
3.
J Infect Dis ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271704

RESUMEN

BACKGROUND: Transcriptomics has been used to evaluate immune responses during malaria in diverse cohorts worldwide. However, the high heterogeneity of cohorts and poor generalization of transcriptional signatures reported in each study limit their potential clinical applications. METHODS: We compiled 28 public datasets containing 1,556 whole blood or peripheral blood mononuclear cells (PBMC) transcriptome samples. We estimated effect sizes with Hedges´ g and DerSimonian-Laird random effects model for meta-analyses of uncomplicated malaria. Random forest models identified gene signatures that discriminate malaria from bacterial infections or malaria severity. Parasitological, hematological, immunological, and metabolomics data were used for validation. RESULTS: We identified three gene signatures denominated the uncomplicated Malaria Meta-Signature (uMMS), which discriminates P. falciparum malaria from uninfected controls; the Malaria or Bacteria Signature (MoBS), that distinguishes malaria from sepsis and enteric fever; and the cerebral Malaria Meta-Signature (cMMS), which characterizes individuals with cerebral malaria. These signatures correlate with clinical hallmark features of malaria. Blood transcription modules (BTM) indicate immune regulation by glucocorticoids, whereas cell development and adhesion are associated with cerebral malaria. CONCLUSION: Transcriptional meta-signatures reflecting immune cell responses provide potential biomarkers for translational innovation and suggest critical roles for metabolic regulators of inflammation during malaria.

4.
Pharmaceutics ; 15(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37896265

RESUMEN

Malaria is a parasitic infection responsible for high morbidity and mortality rates worldwide. During the disease, phagocytosis of infected red blood cells by the macrophages induces the production of reactive oxygen (ROS) and nitrogen species (RNS), culminating in parasite death. Curcumin (CUR) is a bioactive compound that has been demonstrated to reduce the production of pro-inflammatory cytokines and chemokines produced by macrophages but to reduce parasitemia in infected mice. Hence, the main purpose of this study is to investigate whether curcumin may interfere with macrophage function and polarization after Plasmodium berghei infection in vitro. In our findings, non-polarized macrophage (M0), classically activated (M1), and alternatively activated (M2) phenotypes showed significantly increased phagocytosis of infected red blood cells (iRBCs) when compared to phagocytosis of uninfected red blood cells (RBCs) 3 h after infection. After 24 h, M1 macrophages exposed to RBCs + CUR showed greater elimination capacity when compared to macrophages exposed to iRBCs + CUR, suggesting the interference of curcumin with the microbicidal activity. Additionally, curcumin increased the phagocytic activity of macrophages when used in non-inflammatory conditions (M0) and reduced the inducible nitric oxide synthase (iNOS) and arginase activities in all macrophage phenotypes infected (M0, M1, and M2), suggesting interference in arginine availability by curcumin and balance promotion in macrophage polarization in neutral phenotype (M0). These results support the view of curcumin treatment in malaria as an adjuvant, promoting a balance between pro- and anti-inflammatory responses for a better clinical outcome.

5.
Front Immunol ; 14: 1206979, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876932

RESUMEN

Introduction: Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces rapid production of IgM, IgA, and IgG antibodies directed to multiple viral antigens that may have impact diverse clinical outcomes. Methods: We evaluated IgM, IgA, and IgG antibodies directed to the nucleocapsid (NP), IgA and IgG to the Spike protein and to the receptor-binding domain (RBD), and the presence of neutralizing antibodies (nAb), in a cohort of unvaccinated SARS-CoV-2 infected individuals, in the first 30 days of post-symptom onset (PSO) (T1). Results: This study included 193 coronavirus disease 2019 (COVID-19) participants classified as mild, moderate, severe, critical, and fatal and 27 uninfected controls. In T1, we identified differential antibody profiles associated with distinct clinical presentation. The mild group presented lower levels of anti-NP IgG, and IgA (vs moderate and severe), anti-NP IgM (vs severe, critical and fatal), anti-Spike IgA (vs severe and fatal), and anti-RBD IgG (vs severe). The moderate group presented higher levels of anti-RBD IgA, comparing with severe group. The severe group presented higher levels of anti-NP IgA (vs mild and fatal) and anti-RBD IgG (vs mild and moderate). The fatal group presented higher levels of anti-NP IgM and anti-Spike IgA (vs mild), but lower levels of anti-NP IgA (vs severe). The levels of nAb was lower just in mild group compared to severe, critical, and fatal groups, moreover, no difference was observed among the more severe groups. In addition, we studied 82 convalescent individuals, between 31 days to 6 months (T2) or more than 6 months (T3), PSO, those: 12 mild, 26 moderate, and 46 severe plus critical. The longitudinal analyzes, for the severe plus critical group showed lower levels of anti-NP IgG, IgA and IgM, anti-Spike IgA in relation T3. The follow-up in the fatal group, reveals that the levels of anti-spike IgG increased, while anti-NP IgM levels was decreased along the time in severe/critical and fatal as well as anti-NP IgG and IgA in several/critical groups. Discussion: In summary, the anti-NP IgA and IgG lower levels and the higher levels of anti-RBD and anti-Spike IgA in fatal compared to survival group of individuals admitted to the intensive care unit (ICU). Collectively, our data discriminate death from survival, suggesting that anti-RBD IgA and anti-Spike IgA may play some deleterious effect, in contrast with the potentially protective effect of anti-NP IgA and IgG in the survival group.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Nucleocápside , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina M
6.
Vaccines (Basel) ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37514999

RESUMEN

Immune responses after COVID-19 vaccination should be evaluated in different populations around the world. This study compared antibody responses induced by ChAdOx1 nCoV-19, CoronaVac, and BNT162b2 vaccines. Blood samples from vaccinees were collected pre- and post-vaccinations with the second and third doses. The study enrolled 78 vaccinees, of whom 62.8% were women, with the following median ages: 26 years-ChAdOx1 nCoV-19; 40 years-CoronaVac; 30 years-BNT162b2. Serum samples were quantified for anti-RBD IgG and anti-RBD IgA and anti-spike IgG by ELISA. After two vaccine doses, BNT162b2 vaccinees produced higher levels of anti-RBD IgA and IgG, and anti-spike IgG compared to ChAdOx1 nCoV-19 and CoronaVac vaccinees. The third dose booster with BNT162b2 induced higher levels of anti-RBD IgA and IgG, and anti-spike IgG in CoronaVac vaccinees. Individuals who reported a SARS-CoV-2 infection before or during the study had higher anti-RBD IgA and IgG production. In conclusion, two doses of the studied vaccines induced detectable levels of anti-RBD IgA and IgG and anti-spike IgG in vaccinees. The heterologous booster with BNT162b2 increased anti-RBD IgA and IgG and anti-spike IgG levels in CoronaVac vaccinees and anti-RBD IgA levels in ChAdOx1 nCoV-19 vaccinees. Furthermore, SARS-CoV-2 infection induced higher anti-RBD IgA and IgG levels in CoronaVac vaccinees.

7.
Methods Mol Biol ; 2673: 411-429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258930

RESUMEN

Zika virus (ZIKV) is an emerging virus from the Flaviviridae family and Flavivirus genus that has caused important outbreaks around the world. ZIKV infection is associated with severe neuropathology in newborns and adults. Until now, there is no licensed vaccine available for ZIKV infection. Therefore, the development of a safe and effective vaccine against ZIKV is an urgent need. Recently, we designed an in silico multi-epitope vaccine for ZIKV based on immunoinformatics tools. To construct this in silico ZIKV vaccine, we used a consensus sequence generated from ZIKV sequences available in databank. Then, we selected CD4+ and CD8+ T cell epitopes from all ZIKV proteins based on the binding prediction to class II and class I human leukocyte antigen (HLA) molecules, promiscuity, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the construct and B cell epitopes were identified. Adjuvants were associated to increase immunogenicity. Distinct linkers were used for connecting the CD4+ and CD8+ T cell epitopes, EDIII, and adjuvants. Several analyses, such as antigenicity, population coverage, allergenicity, autoimmunity, and secondary and tertiary structures of the vaccine, were evaluated using various immunoinformatics tools and online web servers. In this chapter, we present the protocols with the rationale and detailed steps needed for this in silico multi-epitope ZIKV vaccine design.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Recién Nacido , Humanos , Virus Zika/genética , Infección por el Virus Zika/prevención & control , Epítopos de Linfocito T , Epítopos de Linfocito B , Proteínas del Envoltorio Viral , Biología Computacional/métodos , Simulación del Acoplamiento Molecular
8.
Microbiol Spectr ; : e0219422, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36852984

RESUMEN

Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.

9.
J Mol Med (Berl) ; 101(1-2): 183-195, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36790534

RESUMEN

Higher endotoxin in the circulation may indicate a compromised state of host immune response against coinfections in severe COVID-19 patients. We evaluated the inflammatory response of monocytes from COVID-19 patients after lipopolysaccharide (LPS) challenge. Whole blood samples of healthy controls, patients with mild COVID-19, and patients with severe COVID-19 were incubated with LPS for 2 h. Severe COVID-19 patients presented higher LPS and sCD14 levels in the plasma than healthy controls and mild COVID-19 patients. In non-stimulated in vitro condition, severe COVID-19 patients presented higher inflammatory cytokines and PGE-2 levels and CD14 + HLA-DRlow monocytes frequency than controls. Moreover, severe COVID-19 patients presented higher NF-κB p65 phosphorylation in CD14 + HLA-DRlow, as well as higher expression of TLR-4 and NF-κB p65 phosphorylation in CD14 + HLA-DRhigh compared to controls. The stimulation of LPS in whole blood of severe COVID-19 patients leads to lower cytokine production but higher PGE-2 levels compared to controls. Endotoxin challenge with both concentrations reduced the frequency of CD14 + HLA-DRlow in severe COVID-19 patients, but the increases in TLR-4 expression and NF-κB p65 phosphorylation were more pronounced in both CD14 + monocytes of healthy controls and mild COVID-19 patients compared to severe COVID-19 group. We conclude that acute SARS-CoV-2 infection is associated with diminished endotoxin response in monocytes. KEY MESSAGES: Severe COVID-19 patients had higher levels of LPS and systemic IL-6 and TNF-α. Severe COVID-19 patients presented higher CD14+HLA-DRlow monocytes. Increased TLR-4/NF-κB axis was identified in monocytes of severe COVID-19. Blunted production of cytokines after whole blood LPS stimulation in severe COVID-19. Lower TLR-4/NF-κB activation in monocytes after LPS stimulation in severe COVID-19.


Asunto(s)
COVID-19 , Monocitos , Humanos , Monocitos/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Tolerancia a Endotoxinas , Lipopolisacáridos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antígenos HLA-DR/metabolismo , Receptores de Lipopolisacáridos/metabolismo
10.
Front Genet ; 13: 857728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719399

RESUMEN

Zika virus (ZIKV) is an arbovirus mainly transmitted by mosquitos of the genus Aedes. The first cases of ZIKV infection in South America occurred in Brazil in 2015. The infection in humans causes diverse symptoms from asymptomatic to a syndrome-like dengue infection with fever, arthralgia, and myalgia. Furthermore, ZIKV infection during pregnancy is associated with fetal microcephaly and neurological disorders. The identification of host molecular mechanisms responsible for the modulation of different signaling pathways in response to ZIKV is the first step to finding potential biomarkers and therapeutic targets and understanding disease outcomes. In the last decade, it has been shown that microRNAs (miRNAs) are important post-transcriptional regulators involved in virtually all cellular processes. miRNAs present in body fluids can not only serve as key biomarkers for diagnostics and prognosis of human disorders but also contribute to cellular signaling offering new insights into pathological mechanisms. Here, we describe for the first time ZIKV-induced changes in miRNA plasma levels in patients during the acute and recovery phases of infection. We observed that during ZIKV acute infection, among the dysregulated miRNAs (DMs), the majority is with decreased levels when compared to convalescent and control patients. We used systems biology tools to build and highlight biological interactions between miRNAs and their multiple direct and indirect target molecules. Among the 24 DMs identified in ZIKV + patients, miR-146, miR-125a-5p, miR-30-5p, and miR-142-3p were related to signaling pathways modulated during infection and immune response. The results presented here are an effort to open new vistas for the key roles of miRNAs during ZIKV infection.

11.
Vet Comp Oncol ; 20(4): 752-766, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35698822

RESUMEN

Distinct thermal therapies have been used for cancer therapy. For hyperthermia (HT) treatment the tumour tissue is heated to temperatures between 39 and 45°C, while during ablation (AB) temperatures above 50°C are achieved. HT is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In contrast, AB is usually used as a single modality for direct tumour cell killing. Both thermal therapies have been shown to result in cytotoxicity as well as immune response stimulation. Immunogenic responses encompass the innate and adaptive immune systems and involve the activation of macrophages, dendritic cells, natural killer cells and T cells. Several heat technologies are used, but great interest arises from nanotechnology-based thermal therapies. Spontaneous tumours in dogs can be a model for cancer immunotherapies with several advantages. In addition, veterinary oncology represents a growing market with an important demand for new therapies. In this review, we will focus on nanoparticle-mediated thermal-induced immunogenic effects, the beneficial potential of integrating thermal nanomedicine with immunotherapies and the results of published works with thermotherapies for cancer using dogs with spontaneous tumours, highlighting the works that evaluated the effect on the immune system in order to show dogs with spontaneous cancer as a good model for evaluated the immunomodulatory effect of nanoparticle-mediated thermal therapies.


Asunto(s)
Enfermedades de los Perros , Hipertermia Inducida , Nanopartículas , Neoplasias , Perros , Animales , Terapia Combinada/veterinaria , Enfermedades de los Perros/radioterapia , Neoplasias/terapia , Neoplasias/veterinaria , Hipertermia Inducida/veterinaria , Hipertermia Inducida/métodos , Inmunidad , Nanopartículas/uso terapéutico
12.
Int. arch. otorhinolaryngol. (Impr.) ; 26(2): 208-212, Apr.-June 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1385092

RESUMEN

Abstract Introduction Palatine and pharyngeal tonsils are the first line of defense against pathogens. Clinically, two alterations may require surgical removal of the tonsils: hypertrophy and recurrent tonsillitis. The two conditions probably result from a dysfunction of the immune system. Objective To evaluate possible differences in the plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in patients submitted to adenotonsillectomy. Methods Prospective, longitudinal study with 25 children undergoing adenotonsillectomy separated into 3 different groups: recurrent tonsillitis (RT), composed of 7 patients; recurrent hypertrophy tonsillitis (RTTH), with 8 patients; and the tonsillar hypertrophy (TH) group, with 10 patients. Ten healthy control children (SD) were also included in the study. Peripheral blood was collected, and plasma was separated to measure the levels of TNF-α, IL-6, and IL-10. The Mann-Whitney test was used for statistical analysis. Results The plasma level of IL-6 was higher in the RT (p= 0.0394) and TH (p= 0.0009) groups, compared with the control group. The TH group also had higher levels of IL-6 than the RT group (p= 0.039). The IL-6/IL-10 ratio was higher in the RT (p= 0.029) and TH (p= 0.0005) groups compared with the control group. Between the RT and RTTH groups, the IL-6/IL-10 ratio was higher in the RT group, with a statistically significant difference (p= 0.0091). Conclusion Patients with a history of chronic tonsillitis had higher levels of IL-6, compared with the control group.

13.
Int Arch Otorhinolaryngol ; 26(2): e208-e212, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35602273

RESUMEN

Introduction Palatine and pharyngeal tonsils are the first line of defense against pathogens. Clinically, two alterations may require surgical removal of the tonsils: hypertrophy and recurrent tonsillitis. The two conditions probably result from a dysfunction of the immune system. Objective To evaluate possible differences in the plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in patients submitted to adenotonsillectomy. Methods Prospective, longitudinal study with 25 children undergoing adenotonsillectomy separated into 3 different groups: recurrent tonsillitis (RT), composed of 7 patients; recurrent hypertrophy tonsillitis (RTTH), with 8 patients; and the tonsillar hypertrophy (TH) group, with 10 patients. Ten healthy control children (SD) were also included in the study. Peripheral blood was collected, and plasma was separated to measure the levels of TNF-α, IL-6, and IL-10. The Mann-Whitney test was used for statistical analysis. Results The plasma level of IL-6 was higher in the RT ( p = 0.0394) and TH ( p = 0.0009) groups, compared with the control group. The TH group also had higher levels of IL-6 than the RT group ( p = 0.039). The IL-6/IL-10 ratio was higher in the RT ( p = 0.029) and TH ( p = 0.0005) groups compared with the control group. Between the RT and RTTH groups, the IL-6/IL-10 ratio was higher in the RT group, with a statistically significant difference ( p = 0.0091). Conclusion Patients with a history of chronic tonsillitis had higher levels of IL-6, compared with the control group.

14.
J Clin Virol Plus ; 2(1): 100059, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35262032

RESUMEN

Background: COVID-19 pandemic continues to be a priority in public health worldwide, and factors inherent to SARS-CoV-2 pathogenesis and genomic characteristics are under study. Investigations that evaluate possible risk factors for infection, clinical manifestations, and viral shedding in different specimens also need to clarify possible associations with COVID-19 prognosis and disease outcomes. Study design: In this study, we evaluated SARS-CoV-2 positivity and estimated viral loads by real-time RT-PCR in stool, sera, and urine samples from 35 patients, with a positive SARS-CoV-2 RNA molecular test in respiratory sample, attended at a University COVID-19 referral hospital in Goiania, Goias, Brazil. Whole-genome sequencing was also performed in samples with higher viral load. Results: The positivity index was 51.43%, 14.28%, and 5.71% in stool, sera, and urine specimens, respectively. The median viral load was 8.01 × 106 GC/g, 2.03 × 106 GC/mL, and 1.36 × 105 GC/mL in stool, sera, and urine, respectivelly. Of all patients, 88.57% had previous comorbidities, and 48.39% of them had detectable SARS-CoV-2 RNA in at least one type of clinical specimen evaluated by this study (stool, sera or urine). A higher viral load was observed in patients with more than two previous comorbidities and that were classified as severe or critical conditions. Samples with the highest viral loads were sequenced and characterized as B.1.1.33 variant. Conclusion: We conclude that SARS-CoV-2 RNA is present in more than one type of clinical specimen during the infection, and that the most critical patients had detectable viral RNA in more than one clinical specimen at the same time point.

15.
Sci Rep ; 12(1): 53, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997041

RESUMEN

Zika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine's average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.


Asunto(s)
Biología Computacional/métodos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Proteínas Virales/inmunología , Vacunas Virales/química , Vacunas Virales/inmunología , Virus Zika/inmunología , Adyuvantes Inmunológicos , Autoinmunidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Epítopos de Linfocito B/química , Epítopos de Linfocito T/química , Flagelina/inmunología , Humanos , Inmunidad Humoral , Inmunogenicidad Vacunal , Lectinas/inmunología , Leucocitos Mononucleares/inmunología , Péptidos/inmunología , Filogenia , Proteínas Ribosómicas/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales/química , Virus Zika/química , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
16.
Acta Trop ; 224: 106146, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34562423

RESUMEN

Coinfection with the human immunodeficiency virus (HIV) and Leishmania impairs immune responses, increases treatment failure and relapse rates in patients with American tegumentary leishmaniasis (ATL), as well as visceral leishmaniasis (VL). There is insufficient data on the treatment, relapse, and secondary prophylaxis in patients coinfected with HIV/Leishmania in Brazil. This study investigated patients with HIV/ATL and HIV/VL to describe the outcome of leishmaniasis in patients assisted at a referral hospital of Brazilian midwestern region. Patients with HIV/ATL (n = 21) mainly presented cutaneous diseases (76.2%) with an overall relapse rate of 28.57% after treatment, whereas HIV/VL (n = 28) patients accounted for 17.5% of the cases. The counts of CD4+ T cells and CD8+ T cells and the CD4+/CD8+ cell ratios at diagnosis or relapses were not significantly different between relapsing and non-relapsing patients. Patients with HIV/ATL or HIV/VL showed high levels of activation markers in CD4+ and CD8+ T cells. The regular use of highly active antiretroviral therapy (HAART) and viral load at the time of diagnosis did not influence the relapse rates. Relapses occurred in 36.4% (4/11) of the patients with HIV/VL receiving secondary prophylaxis and in 5.9% (1/17) of the patients who did not receive secondary prophylaxis (p = 0.06). These data are relevant for the therapeutic management of the patients coinfected with HIV/Leishmania.


Asunto(s)
Coinfección , Infecciones por VIH , Leishmania , Leishmaniasis Visceral , Leishmaniasis , Linfocitos T CD8-positivos , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Recurrencia
17.
Int Immunopharmacol ; 100: 108125, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34543980

RESUMEN

Mucosal barrier alterations may play a role in the pathogenesis of several diseases, including COVID-19. In this study we evaluate the association between bacterial translocation markers and systemic inflammation at the earliest time-point after hospitalization and at the last 72 h of hospitalization in survivors and non-survivors COVID-19 patients. Sixty-six SARS-CoV-2 RT-PCR positive patients and nine non-COVID-19 pneumonia controls were admitted in this study. Blood samples were collected at hospital admission (T1) (Controls and COVID-19 patients) and 0-72 h before hospital discharge (T2, alive or dead) to analyze systemic cytokines and chemokines, lipopolysaccharide (LPS) concentrations and soluble CD14 (sCD14) levels. THP-1 human monocytic cell line was incubated with plasma from survivors and non-survivors COVID-19 patients and their phenotype, activation status, TLR4, and chemokine receptors were analyzed by flow cytometry. COVID-19 patients presented higher IL-6, IFN-γ, TNF-α, TGF-ß1, CCL2/MCP-1, CCL4/MIP-1ß, and CCL5/RANTES levels than controls. Moreover, LPS and sCD14 were higher at hospital admission in SARS-CoV-2-infected patients. Non-survivors COVID-19 patients had increased LPS levels concomitant with higher IL-6, TNF-α, CCL2/MCP-1, and CCL5/RANTES levels at T2. Increased expression of CD16 and CCR5 were identified in THP-1 cells incubated with the plasma of survivor patients obtained at T2. The incubation of THP-1 with T2 plasma of non-survivors COVID-19 leads to higher TLR4, CCR2, CCR5, CCR7, and CD69 expression. In conclusion, the coexistence of increased microbial translocation and hyperinflammation in patients with severe COVID-19 may lead to higher monocyte activation, which may be associated with worsening outcomes, such as death.


Asunto(s)
COVID-19/inmunología , Inflamación/etiología , Lipopolisacáridos/sangre , Monocitos/fisiología , SARS-CoV-2 , Anciano , Anciano de 80 o más Años , Traslocación Bacteriana , COVID-19/mortalidad , Femenino , Hospitalización , Humanos , Mediadores de Inflamación/sangre , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Células THP-1
18.
Cytokine ; 141: 155472, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33618152

RESUMEN

Illicit drug use can cause a variety of effects including alterations in the immune system. The aim of this study was to investigate the effects of illicit drugs on circulating lipopolysaccharide (LPS), systemic inflammation and oxidative stress markers in drug users. We evaluated the levels of soluble CD14 (sCD14), LPS, inflammatory (TNF-α and IL-6) and regulatory (IL-10) cytokines, as well as C-reactive protein (CRP), lipid peroxidation (TBARS) and total thiols in the peripheral blood of 81 men included in groups of cannabis (n = 21), cocaine (n = 12), cannabis-plus-cocaine users (n = 27), and non-drug users (n = 21). The use of cannabis plus cocaine leads to higher systemic levels of LPS, CRP, IL-6 and higher IL-6/IL-10 ratio, characterizing a proinflammatory profile. In contrast, a regulatory profile as viewed by lower systemic TNF-α and IL-6 levels and lower TNF-α/IL-10 ratio were observed in cannabis users compared to the control group. Moreover, cocaine users presented a lower content of non-enzymatic antioxidant thiol compared to control group, cannabis group and cannabis plus cocaine group. In conclusion, our results indicate that the use of cannabis contributes to an anti-inflammatory/or regulatory profile while the concomitant cannabis plus cocaine consumption coexists with increased circulating amounts of LPS and proinflammatory status.


Asunto(s)
Proteína C-Reactiva/metabolismo , Trastornos Relacionados con Cocaína/sangre , Citocinas/sangre , Consumidores de Drogas , Lipopolisacáridos/sangre , Abuso de Marihuana/sangre , Adulto , Cannabis/efectos adversos , Cocaína/efectos adversos , Humanos , Inflamación/sangre , Masculino
19.
PLoS One ; 16(2): e0246692, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33561140

RESUMEN

Megacolon is one of the main late complications of Chagas disease, affecting approximately 10% of symptomatic patients. However, studies are needed to understand the mechanisms involved in the progression of this condition. During infection by Trypanosoma cruzi (T. cruzi), an inflammatory profile sets in that is involved in neural death, and this destruction is known to be essential for megacolon progression. One of the proteins related to the maintenance of intestinal neurons is the type 2 bone morphogenetic protein (BMP2). Intestinal BMP2 homeostasis is directly involved in the maintenance of organ function. Thus, the aim of this study was to correlate the production of intestinal BMP2 with immunopathological changes in C57Bl/6 mice infected with the T. cruzi Y strain in the acute and chronic phases. The mice were infected with 1000 blood trypomastigote forms. After euthanasia, the colon was collected, divided into two fragments, and a half was used for histological analysis and the other half for BMP2, IFNγ, TNF-α, and IL-10 quantification. The infection induced increased intestinal IFNγ and BMP2 production during the acute phase as well as an increase in the inflammatory infiltrate. In contrast, a decreased number of neurons in the myenteric plexus were observed during this phase. Collagen deposition increased gradually throughout the infection, as demonstrated in the chronic phase. Additionally, a BMP2 increase during the acute phase was positively correlated with intestinal IFNγ. In the same analyzed period, BMP2 and IFNγ showed negative correlations with the number of neurons in the myenteric plexus. As the first report of BMP2 alteration after infection by T. cruzi, we suggest that this imbalance is not only related to neuronal damage but may also represent a new route for maintaining the intestinal proinflammatory profile during the acute phase.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Enfermedad de Chagas/metabolismo , Interferón gamma/metabolismo , Animales , Proteína Morfogenética Ósea 2/genética , Enfermedad de Chagas/fisiopatología , Colon/patología , Modelos Animales de Enfermedad , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patología , Masculino , Megacolon/fisiopatología , Ratones , Ratones Endogámicos C57BL , Plexo Mientérico/metabolismo , Neuronas/metabolismo , Trypanosoma cruzi/patogenicidad , Factor de Necrosis Tumoral alfa/metabolismo
20.
Infect Genet Evol ; 85: 104489, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32758675

RESUMEN

The current SARS-CoV-2 pandemic has imposed new challenges and demands for health systems, especially in the development of new vaccine strategies. Vaccines for many pathogens were developed based on the display of foreign epitopes in the variable regions of the human adenovirus (HAdV) major capsid proteins (hexon, penton and fiber). The humoral immune response against the HAdV major capsid proteins was demonstrated to play a role in the development of an immune response against the epitopes in display. Through the immunoinformatic profiling of the major capsid proteins of HAdVs from different species, we developed a modular concept that can be used in the development of vaccines based on HAdV vectors. Our data suggests that different immunomodulatory potentials can be observed in the conserved regions, present in the hexon and penton proteins, from different species. Using this modular approach, we developed a HAdV-5 based vaccine strategy for SARS-CoV-2, constructed through the display of SARS-CoV-2 epitopes indicated by our prediction analysis as immunologically relevant. The sequences of the HAdV vector major capsid proteins were also edited to enhance the IFN-gamma induction and antigen presenting cells activation. This is the first study proposing a modular HAdV platform developed to aid the design of new vaccines by inducing an immune response more suited for the epitopes in display.


Asunto(s)
Proteínas de la Cápside/química , Biología Computacional/métodos , Epítopos de Linfocito B/inmunología , Vacunas Virales/inmunología , Presentación de Antígeno , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Simulación por Computador , Dependovirus/inmunología , Diseño de Fármacos , Epítopos de Linfocito B/genética , Humanos , Inmunidad Humoral , Interferón gamma/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA