Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 25(1): e202300918, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169096

RESUMEN

The front cover artwork is provided by the TheoCheM group at the Vrije Universiteit Amsterdam. The image shows how, in X- •••H3 C-Y complexes, the Lewis base X- tetrel-binds to the central C while sterically pushing the H atoms towards C; hence, the compression and blueshift of the H-C bonds. Read the full text of the Research Article at 10.1002/cphc.202300480.

2.
Chemistry ; 30(24): e202304361, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38284777

RESUMEN

Exchanging oxygen in the functional group C=O (i. e., carbonyl) for the less electronegative Group 16 elements, sulfur or selenium, unexpectedly enhances the electronegativity of the C=X group in π-conjugated molecules and reduces the molecular π HOMO-LUMO energy gap. Quantum-chemical analyses revealed that the steric size of the chalcogen atom X is at the origin of this seemingly counterintuitive behavior. This tuning of the chemical properties of carbonyl compounds by varying the chalcogen atom size in the C=X bond can be applied in many fields of chemistry. This concept article delineates several useful applications in the fields of organocatalysis, supramolecular chemistry, and photo(electro)chemistry.

3.
Phys Chem Chem Phys ; 26(15): 11306-11310, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38054332

RESUMEN

Non-frontier atom exchanges in hydrogen-bonded aromatic dimers can induce significant interaction energy changes (up to 6.5 kcal mol-1). Our quantum-chemical analyses reveal that the relative hydrogen-bond strengths of N-edited guanine-cytosine base pair isosteres, which cannot be explained from the frontier atoms, follow from the charge accumulation in the monomers.

4.
Chemphyschem ; 25(1): e202300480, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37864778

RESUMEN

We have quantum chemically investigated the origin of the atypical blueshift of the H-C bond stretching frequency in the hydrogen-bonded complex X- •••H3 C-Y (X, Y=F, Cl, Br, I), as compared to the corresponding redshift occurring in Cl- •••H3 N and Cl- •••H3 C-H, using relativistic density functional theory (DFT) at ZORA-BLYP-D3(BJ)/QZ4P. Previously, this blueshift was attributed, among others, to the contraction of the H-C bonds as the H3 C moiety becomes less pyramidal. Herein, we provide quantitative evidence that, instead, the blueshift arises from a direct and strong X- •••C interaction of the HOMO of A- with the backside lobe on carbon of the low-lying C-Y antibonding σ* LUMO of the H3 C-Y fragment. This X- •••C bond, in essence a tetrel bond, pushes the H atoms towards a shorter H-C distance and makes the H3 C moiety more planar. The blueshift may, therefore, serve as a diagnostic for tetrel bonding.

5.
Chemistry ; 30(15): e202304161, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38117278

RESUMEN

Opposite to what one might expect, we find that the C=X group can become effectively more, not less, electronegative when the Pauling electronegativity of atom X decreases down Groups 16, 15, and 14 of the Periodic Table. Our quantum-chemical analyses, show that, and why, this phenomenon is a direct consequence of the increasing size of atom X down a group. These findings can be applied to tuning and improving the hydrogen-bond donor strength of amides H2 NC(=X)R by increasingly withdrawing density from the NH2 group. A striking example is that H2 NC(=SiR2 )R is a stronger hydrogen-bond donor than H2 NC(=CR2 )R.

6.
Org Biomol Chem ; 21(41): 8403-8412, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830458

RESUMEN

Cooperative effects cause extra stabilization of hydrogen-bonded supramolecular systems. In this work we have designed hydrogen-bonded rosettes derived from a guanine-cytosine Janus-type motif with the aim of finding a monomer that enhances the synergy of supramolecular systems. For this, relativistic dispersion-corrected density functional theory computations have been performed. Our proposal involves a monomer with three hydrogen-bonds pointing in the same direction, which translates into shorter bonds, stronger donor-acceptor interactions, and more attractive electrostatic interactions, thus giving rise to rosettes with strengthened cooperativity. This newly designed rosette has triple the cooperativity found for the naturally occurring guanine quadruplex.


Asunto(s)
ADN , Hidrógeno , ADN/química , Citosina/química , Enlace de Hidrógeno , Guanina/química
7.
J Comput Chem ; 44(27): 2108-2119, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37403918

RESUMEN

The symmetry-decomposed Voronoi deformation density (VDD) charge analysis is an insightful and robust computational tool to aid the understanding of chemical bonding throughout all fields of chemistry. This method quantifies the atomic charge flow associated with chemical-bond formation and enables decomposition of this charge flow into contributions of (1) orbital interaction types, that is, Pauli repulsive or bonding orbital interactions; (2) per irreducible representation (irrep) of any point-group symmetry of interacting closed-shell molecular fragments; and now also (3) interacting open-shell (i.e., radical) molecular fragments. The symmetry-decomposed VDD charge analysis augments the symmetry-decomposed energy decomposition analysis (EDA) so that the charge flow associated with Pauli repulsion and orbital interactions can be quantified both per atom and per irrep, for example, for σ, π, and δ electrons. This provides detailed insights into fundamental aspects of chemical bonding that are not accessible from EDA.

8.
Chemistry ; 29(34): e202300850, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-36974900

RESUMEN

Our quantum chemical analyses elucidated how the replacement of O in the amide bonds of benzene-1,3-5-tricarboxamides (OBTAs) with the larger chalcogens S and Se enhances the intermolecular interactions and thereby the stability of the obtained hydrogen-bonded supramolecular polymers due to two unexpected reasons: i) the SBTA and SeBTA monomers have a better geometry for self-assembly and ii) induce stronger covalent (hydrogen-bond) interactions besides enhanced dispersion interactions. In addition, it is shown that the cooperativity in benzene-1,3,5-triamide (BTA) self-assembly is caused by charge separation in the σ-electronic system following the covalency in the hydrogen bonds.

9.
Chem Asian J ; 17(24): e202201010, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36342166

RESUMEN

Hydrogen-bonded supramolecular systems are known to obtain extra stabilization from the complexation with ions, like guanine quadruplex (GQ). They experience strong hydrogen bonds due to cooperative effects. To gain deeper understanding of the interplay between ions and hydrogen-bonding cooperativity, relativistic dispersion-corrected density functional theory (DFT-D) computations were performed on triple-layer hydrogen-bonded rosettes of ammeline interacting with alkali metal cations and halides. Our results show that when ions are placed between the stacks, the hydrogen bonds are weakened but, at the same time, the cooperativity is strengthened. This phenomenon can be traced back to the shrinkage of the cavity as the ions pull the monomers closer together and therefore the distance between the monomers becomes smaller. On one hand this results in a larger steric repulsion, but on the other hand, the donor-acceptor interactions are enhanced due to the larger overlap between the donating and accepting orbitals leading to more charge donation and therefore an enhanced electrostatic attraction.


Asunto(s)
Halógenos , Hidrógeno , Halógenos/química , Álcalis , Modelos Moleculares , Aniones/química , Cationes/química
10.
J Phys Chem A ; 126(32): 5434-5448, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35930743

RESUMEN

The Tc-99m nucleus is the most used nuclide in radiopharmaceuticals designed for imaging diagnosis. The metal can exist in nine distinct oxidation states and forms distinct coordination complexes with a variety of chelating agents and geometries. These complexes are usually characterized through Tc-99 NMR that is very sensitive to the Tc coordination sphere. Therefore, predicting Tc-99 NMR might be useful to assist experimentalists in structural characterization. In the present study, we propose three computational protocols for predicting Tc-99 NMR chemical shifts based on density functional theory calculations using relativistic and nonrelativistic Hamiltonians: the relativistic Model 1, the nonrelativistic Model 2, and the empirical nonrelativistic Model 3. In Models 2 and 3, the NMR-DKH basis set was used for all atoms, including the Tc, for which it was developed here. All models were applied for a set of 41 Tc-complexes with metal oxidation states 0, I, and V, for which the Tc-99 chemical shift was available experimentally. The mean absolute deviation and the mean relative deviation were 67 ppm and 4.8% (Model 1), 92 ppm and 6.2% (Model 2), and 65 ppm and 4.9% (Model 3), respectively. Last, the effect of the explicit solvent was evaluated for the [TcO2(en)2]+─Tc(V) complex. The calculated results for the Tc-99 NMR chemical shift at SO-ZORA-SSB-D/TZ2P-ZORA/COSMO//TPSS/def2-SVP/IEF-PCM(UFF) show that the inclusion of 14 water molecules (first solvation shell) together with the implicit solvation model leads to an absolute deviation of only 7 ppm (0.3%) from the experimental value, indicating that the solvent effects play a key role in predicting Tc-99 NMR.


Asunto(s)
Radiofármacos , Tecnecio , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Solventes/química
11.
J Org Chem ; 87(17): 11625-11633, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35984736

RESUMEN

The gauche conformer in 1-X,2-Y-disubstituted ethanes, that is, the staggered orientation in which X and Y are in closer contact, is only favored for relatively small substituents that do not give rise to large X···Y steric repulsion. For more diffuse substituents, weakly attractive orbital interactions between antiperiplanar bonds (i.e., hyperconjugation) cannot overrule the repulsive forces between X and Y. Our quantum chemical analyses of the rotational isomerism of XCH2CH2Y (X = F, OH; Y = I) at ZORA-BP86-D3(BJ)/QZ4P reveal that indeed the anti conformer is generally favored due to a less destabilizing I···F and I···O-H steric repulsion. The only case when the gauche conformer is preferred is when the hydroxyl hydrogen is oriented toward the iodine atom in the 2-iodoethanol. This is because of the significantly stabilizing covalent component of the I···H-O intramolecular hydrogen bond. Therefore, we show that strong intramolecular interactions can overcome the steric repulsion between bulky substituents in 1,2-disubstituted ethanes and cause the gauche effect. Our quantum chemical computations have guided nuclear magnetic resonance experiments that confirm the increase in the gauche population as X goes from F to OH.

12.
Dalton Trans ; 51(31): 11675-11684, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35848449

RESUMEN

The formation of Co(III)-thiolate complexes from Co(II)-disulfide complexes using the anionic ligand 8-quinolinolate (quin-) has been studied experimentally and quantum chemically. Two Co(II)-disulfide complexes [Co2(LxSSLx)(Cl)4] (x = 1 or 2; L1SSL1 = 2,2'-disulfanediylbis(N,N-bis(pyridin-2-ylmethyl)ethan-1-amine; L2SSL2 = 2,2'-disulfanedylbis (N-((6-methylpyridin-2-yl)methyl)-N-(pyridin-2-ylmethyl) ethan-1-amine) have been successfully converted with high yield to their corresponding Co(III)-thiolate complexes upon addition of the ligand 8-quinolinolate. Using density functional theory (DFT) computations the d-orbital splitting energies of the cobalt-thiolate compounds [Co(L1S)(quin)]+ and [Co(L2S)(quin)]+ were estimated to be 3.10 eV and 3.07 eV, indicating a slightly smaller ligand-field strength of ligand L2SSL2 than of L1SSL1. Furthermore, the orientation of the quin- ligand in the thiolate compounds determines the stability of the thiolate complex. DFT computations show that the thiolate structure benefits from more electrostatic attraction when the oxygen atom of the quin- ligand is positioned trans to the sulfur atom of the [Co(L1S)]2+ fragment. Quin- is the first auxiliary ligand with which it appeared possible to induce the redox-conversion reaction in cobalt(II) compounds of the relatively weak-field ligand L2SSL2.


Asunto(s)
Disulfuros , Compuestos de Sulfhidrilo , Aminas , Cobalto/química , Cristalografía por Rayos X , Disulfuros/química , Ligandos , Compuestos de Sulfhidrilo/química
13.
Phys Chem Chem Phys ; 24(26): 15726-15735, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730200

RESUMEN

We discuss the fundamental aspects of the EDA-NOCV method and address some critical comments that have been made recently. The EDA-NOCV method unlike most other methods focuses on the process of bond formation between the interacting species and not just only on the analysis of the finally formed bond. This is demonstrated using LiF as an example. There is a difference between the interactions between the initial species which form the bond and are also the final product of bond cleavage, and the interactions between the fragments in the eventually formed molecule. The flexibility of the method allows the choice of the interacting fragments which helps to identify the charge and electron configuration of the fragments which describe the bond. This is very helpful in cases where the bond may be described with several Lewis structures. We reject the idea that it would be a disadvantage to have "bond path functions" as the energy components in the EDA, which actually indicate the variability of the method. The bonding analysis in a different sequence of the bond formation gives important results for the various questions that can be asked. This is demonstrated by using CH2, CO2 and the formation of a guanine quartet as examples. The fact that a bond is always defined by the bound molecule, the fragments, and their states is universal and deeply physical, as we show here again for various examples. The results of the EDA-NOCV method are in full accordance with the physical mechanism of the chemical bond as revealed by Ruedenberg.


Asunto(s)
Electrones
14.
Chemistry ; 28(31): e202201309, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35555944

RESUMEN

Invited for the cover of this issue are Celine Nieuwland and Célia Fonseca Guerra of the Vrije Universiteit Amsterdam. The image depicts how the increasing atom size of the chalcogen from O to S to Se elongates the carbon-chalcogen bond in amides due to the increase in the steric Pauli repulsion and thereby enhances the amide hydrogen-bond donor strength. Read the full text of the article at 10.1002/chem.202200755.


Asunto(s)
Calcógenos , Tioamidas , Amidas/química , Calcógenos/química , Hidrógeno , Enlace de Hidrógeno
15.
Dalton Trans ; 51(20): 8046-8055, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35551316

RESUMEN

The redox-conversion reaction of cobalt(II)-disulfide to cobalt(III)-thiolate complexes triggered by addition of the bidentate ligand 2,2'-bipyridine has been investigated. Reaction of the cobalt(II)-disulfide complex [Co2(L1SSL1)(X)4] (L1SSL1 = di-2-(bis(2-pyridylmethyl)amino)-ethyldisulfide; X = Cl or Br) [1X] with 2,2'-bipyridine (bpy) resulted in the formation of two different products, namely the cobalt(III)-thiolate complex [Co(L1S)(bpy)]X2 and the unexpected side product [Co2(L1SSL1)(bpy)2(X)2]X2. Crystals of [Co2(L1SSL1)(bpy)2(Cl)2](BPh4)2 [2Cl](BPh4)2 obtained after anion exchange showed the cobalt(II) ions to be in octahedral geometries with the nitrogen donors of the disulfide ligand arranged in a facial conformation and the chloride ion trans to the tertiary amine nitrogen. Remarkably, this side product cannot be converted to the cobalt(III)-thiolate compound [Co(L1S)(bpy)](SbF6)2 [3](SbF6)2 by removal of the chloride ion with use of a silver salt, as this causes scrambling of the ligands, resulting in the formation of [Co(bpy)3]n+. [Co(L1S)(bpy)](SbF6)2 was obtained in a pure form by addition of bpy to a solution in acetonitrile of the compound [Co(L1S)(MeCN)2]2+ [4]2+. Addition of NEt4Cl to [3](SbF6)2 regenerates the cobalt(II)-disulfide complex [1Cl] as confirmed spectroscopically. DFT studies revealed that the conversion from [1Cl] to [3]2+ most likely occurs via the hypothetical intermediate species [2Cl]2+mer, in which the nitrogen atoms of the disulfide ligand are arranged in a meridional conformation. Interestingly, the estimated d-orbital splitting energy of [3]2+ is lower than that of [4]2+, indicating that the ligand-field strength of bpy is lower than anticipated, which hampers clean conversion in the redox-conversion reaction. This study shows that the redox-conversion reaction between cobalt(II)-disulfide and cobalt(III)-thiolate complexes is intricate rather than straightforward.


Asunto(s)
Compuestos Heterocíclicos , 2,2'-Dipiridil/química , Dióxido de Carbono , Cloruros , Cobalto/química , Cristalografía por Rayos X , Disulfuros , Ligandos , Nitrógeno , Oxidación-Reducción
16.
ACS Earth Space Chem ; 6(3): 766-774, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35330632

RESUMEN

It has been experimentally observed that water-ice-embedded polycyclic aromatic hydrocarbons (PAHs) form radical cations when exposed to vacuum UV irradiation, whereas ammonia-embedded PAHs lead to the formation of radical anions. In this study, we explain this phenomenon by investigating the fundamental electronic differences between water and ammonia, the implications of these differences on the PAH-water and PAH-ammonia interaction, and the possible ionization pathways in these complexes using density functional theory (DFT) computations. In the framework of the Kohn-Sham molecular orbital (MO) theory, we show that the ionic state of the PAH photoproducts results from the degree of occupied-occupied MO mixing between the PAHs and the matrix molecules. When interacting with the PAH, the lone pair-type highest occupied molecular orbital (HOMO) of water has poor orbital overlap and is too low in energy to mix with the filled π-orbitals of the PAH. As the lone-pair HOMO of ammonia is significantly higher in energy and has better overlap with filled π-orbitals of the PAH, the subsequent Pauli repulsion leads to mixed MOs with both PAH and ammonia character. By time-dependent DFT calculations, we demonstrate that the formation of mixed PAH-ammonia MOs opens alternative charge-transfer excitation pathways as now electronic density from ammonia can be transferred to unoccupied PAH levels, yielding anionic PAHs. As this pathway is much less available for water-embedded PAHs, charge transfer mainly occurs from localized PAH MOs to mixed PAH-water virtual levels, leading to cationic PAHs.

17.
Chemistry ; 28(31): e202200755, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35322485

RESUMEN

The amino groups of thio- and selenoamides can act as stronger hydrogen-bond donors than of carboxamides, despite the lower electronegativity of S and Se. This phenomenon has been experimentally explored, particularly in organocatalysis, but a sound electronic explanation is lacking. Our quantum chemical investigations show that the NH2 groups in thio- and selenoamides are more positively charged than in carboxamides. This originates from the larger electronic density flow from the nitrogen lone pair of the NH2 group towards the lower-lying π*C=S and π*C=Se orbitals than to the high-lying π*C=O orbital. The relative energies of the π* orbitals result from the overlap between the chalcogen np and carbon 2p atomic orbitals, which is set by the carbon-chalcogen equilibrium distance, a consequence of the Pauli repulsion between the two bonded atoms. Thus, neither the electronegativity nor the often-suggested polarizability but the steric size of the chalcogen atom determines the amide's hydrogen-bond donor capability.


Asunto(s)
Calcógenos , Tioamidas , Carbono , Calcógenos/química , Hidrógeno/química , Enlace de Hidrógeno
18.
ChemistryOpen ; 11(2): e202200013, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35103418

RESUMEN

Invited for this month's cover are the groups of Célia Fonseca Guerra at the Vrije Universiteit Amsterdam and Leiden University, Giampaolo Barone from the Università degli Studi di Palermo, and F. Matthias Bickelhaupt at Vrije Universiteit Amsterdam and Radboud University Nijmegen. The cover picture shows the four primary interaction components (hydrogen bonding, cross-terms, base stacking, and solvation) that determine the stability of B-DNA duplexes. Quantum chemical analyses identify an interplay between the stabilizing hydrogen bonds between nucleotides that drive the formation of the DNA double-strand, and the destabilizing loss of stacking interactions within individual strands combined with partial desolvation. The sequence-dependence in the duplex stability originates mainly from the cross-terms, which can be attractive or repulsive. Read the full text of their Research Article at 10.1002/open.202100231.


Asunto(s)
ADN Forma B , ADN/química , Humanos , Enlace de Hidrógeno , Nucleótidos
19.
ChemistryOpen ; 11(2): e202100231, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35083880

RESUMEN

We have quantum chemically analyzed the influence of nucleotide composition and sequence (that is, order) on the stability of double-stranded B-DNA triplets in aqueous solution. To this end, we have investigated the structure and bonding of all 32 possible DNA duplexes with Watson-Crick base pairing, using dispersion-corrected DFT at the BLYP-D3(BJ)/TZ2P level and COSMO for simulating aqueous solvation. We find enhanced stabilities for duplexes possessing a higher GC base pair content. Our activation strain analyses unexpectedly identify the loss of stacking interactions within individual strands as a destabilizing factor in the duplex formation, in addition to the better-known effects of partial desolvation. Furthermore, we show that the sequence-dependent differences in the interaction energy for duplexes of the same overall base pair composition result from the so-called "diagonal interactions" or "cross terms". Whether cross terms are stabilizing or destabilizing depends on the nature of the electrostatic interaction between polar functional groups in the pertinent nucleobases.


Asunto(s)
ADN Forma B , ADN/química , Conformación de Ácido Nucleico , Nucleótidos/química , Termodinámica
20.
Chempluschem ; 87(2): e202100541, 2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-34957691

RESUMEN

Invited for this month's cover are collaborators from the TheoCheM group of the Vrije Universiteit Amsterdam and the University of Perugia. The cover picture shows a σ-electron traveling through a hydrogen-bonded squaramide linear chain. The charge transfer within the σ-electronic system is the cause for the cooperativity in the investigated urea, deltamide, and squaramide polymers. More information can be found in the Full Paper by Célia Fonseca Guerra, and co-workers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...