Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 584(7819): 51-54, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760045

RESUMEN

White dwarfs represent the final state of evolution for most stars1-3. Certain classes of white dwarfs pulsate4,5, leading to observable brightness variations, and analysis of these variations with theoretical stellar models probes their internal structure. Modelling of these pulsating stars provides stringent tests of white dwarf models and a detailed picture of the outcome of the late stages of stellar evolution6. However, the high-energy-density states that exist in white dwarfs are extremely difficult to reach and to measure in the laboratory, so theoretical predictions are largely untested at these conditions. Here we report measurements of the relationship between pressure and density along the principal shock Hugoniot (equations describing the state of the sample material before and after the passage of the shock derived from conservation laws) of hydrocarbon to within five per cent. The observed maximum compressibility is consistent with theoretical models that include detailed electronic structure. This is relevant for the equation of state of matter at pressures ranging from 100 million to 450 million atmospheres, where the understanding of white dwarf physics is sensitive to the equation of state and where models differ considerably. The measurements test these equation-of-state relations that are used in the modelling of white dwarfs and inertial confinement fusion experiments7,8, and we predict an increase in compressibility due to ionization of the inner-core orbitals of carbon. We also find that a detailed treatment of the electronic structure and the electron degeneracy pressure is required to capture the measured shape of the pressure-density evolution for hydrocarbon before peak compression. Our results illuminate the equation of state of the white dwarf envelope (the region surrounding the stellar core that contains partially ionized and partially degenerate non-ideal plasmas), which is a weak link in the constitutive physics informing the structure and evolution of white dwarf stars9.

2.
Nature ; 565(7738): 202-205, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626942

RESUMEN

White dwarfs are stellar embers depleted of nuclear energy sources that cool over billions of years1. These stars, which are supported by electron degeneracy pressure, reach densities of 107 grams per cubic centimetre in their cores2. It has been predicted that a first-order phase transition occurs during white-dwarf cooling, leading to the crystallization of the non-degenerate carbon and oxygen ions in the core, which releases a considerable amount of latent heat and delays the cooling process by about one billion years3. However, no direct observational evidence of this effect has been reported so far. Here we report the presence of a pile-up in the cooling sequence of evolving white dwarfs within 100 parsecs of the Sun, determined using photometry and parallax data from the Gaia satellite4. Using modelling, we infer that this pile-up arises from the release of latent heat as the cores of the white dwarfs crystallize. In addition to the release of latent heat, we find strong evidence that cooling is further slowed by the liberation of gravitational energy from element sedimentation in the crystallizing cores5-7. Our results describe the energy released by crystallization in strongly coupled Coulomb plasmas8,9, and the measured cooling delays could help to improve the accuracy of methods used to determine the age of stellar populations from white dwarfs10.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...