Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 20: 292-309, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31605944

RESUMEN

CEP55 regulates the final critical step of cell division termed cytokinetic abscission. We report herein that CEP55 contains two NEMO-like ubiquitin-binding domains (UBDs), NOA and ZF, which regulate its function in a different manner. In vitro studies of isolated domains showed that NOA adopts a dimeric coiled-coil structure, whereas ZF is based on a UBZ scaffold. Strikingly, CEP55 knocked-down HeLa cells reconstituted with the full-length CEP55 ubiquitin-binding defective mutants, containing structure-guided mutations either in NOACEP55 or ZFCEP55 domains, display severe abscission defects. In addition, the ZFCEP55 can be functionally replaced by some ZF-based UBDs belonging to the UBZ family, indicating that the essential function of ZFCEP55 is to act as ubiquitin receptor. Our work reveals an unexpected role of CEP55 in non-degradative ubiquitin signaling during cytokinetic abscission and provides a molecular basis as to how CEP55 mutations can lead to neurological disorders such as the MARCH syndrome.

2.
Nat Commun ; 7: 12629, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27586688

RESUMEN

The NF-κB pathway has critical roles in cancer, immunity and inflammatory responses. Understanding the mechanism(s) by which mutations in genes involved in the pathway cause disease has provided valuable insight into its regulation, yet many aspects remain unexplained. Several lines of evidence have led to the hypothesis that the regulatory/sensor protein NEMO acts as a biological binary switch. This hypothesis depends on the formation of a higher-order structure, which has yet to be identified using traditional molecular techniques. Here we use super-resolution microscopy to reveal the existence of higher-order NEMO lattice structures dependent on the presence of polyubiquitin chains before NF-κB activation. Such structures may permit proximity-based trans-autophosphorylation, leading to cooperative activation of the signalling cascade. We further show that NF-κB activation results in modification of these structures. Finally, we demonstrate that these structures are abrogated in cells derived from incontinentia pigmenti patients.


Asunto(s)
Quinasa I-kappa B/ultraestructura , Incontinencia Pigmentaria/patología , Microscopía/métodos , FN-kappa B/metabolismo , Línea Celular Tumoral , Activación Enzimática , Humanos , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/fisiología , Unión Proteica , Estructura Secundaria de Proteína , Ubiquitina/metabolismo
3.
Talanta ; 137: 100-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25770612

RESUMEN

Antique objects are known to have been brightly colored. However, the appearance of these objects has changed over time and paint traces are rarely preserved. The surface of ivory objects (8th century B.C., Syria) from the Louvre museum collection (Paris) have been non-invasively studied by simultaneous particle-induced X-ray emission (PIXE) and Rutherford and elastic backscattering spectrometry (RBS/EBS) micro-imaging at the AGLAE facility (C2RMF, Paris). Qualitative 2D chemical images of elements ranging from Na to Pb on the surface of the ancient ivory carvings provide evidence of lost polychromy and gilding. Quantitative PIXE data of specific areas allow discrimination between traces of sediments and former polychromy. Different shades of blue can be differentiated from particular Pb/Cu ratios. The characterization of gilding based on RBS data demonstrates the exceptional technological skills of the Phoenician craftsmen supposed to have carved the Arslan Tash ivories. More precise reconstructions of the original polychromy compared to previous studies and a criterion for the authentication of ancient gilded ivory object are proposed.

4.
Methods Mol Biol ; 1280: 321-37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25736758

RESUMEN

Ubiquitin serves as a signal for a variety of cellular processes and its specific interaction with ubiquitin-binding domain (UBD) regulates key cellular events including protein degradation, cell-cycle control, DNA repair, and kinase activation. Several binding mechanisms for isolated UBDs have been reported in recent years. However, little is known about the mechanism through which proteins containing multiple-UBDs achieve specificity for a particular oligomer of polyUb. The NF-κB essential modulator (NEMO, also known IKKγ), which plays a key role in the NF-κB signaling pathway, belongs to the latter family of proteins since it contains two distal NOA (also known UBAN/CC2-LZ/NUB) and ZF UBDs, separated by an unstructured proline-rich linker of about 40 residues in length. Here, we show a new procedure for fast purification of this bipartite domain. We also describe the use of intrinsic fluorescence spectroscopy for quantitative investigations of ubiquitin interactions between two distal ubiquitin-binding domains of NEMO (NOA and ZF). This spectroscopic method has many advantages over other techniques like GST pulldown and Biacore's SPR for monitoring avid interactions between two UBDs, especially when UBDs are located at significant distance from each other within the protein.


Asunto(s)
Quinasa I-kappa B/metabolismo , Dominios y Motivos de Interacción de Proteínas , Espectrometría de Fluorescencia , Ubiquitina/metabolismo , Dicroismo Circular , Quinasa I-kappa B/química , Quinasa I-kappa B/genética , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia/métodos , Ubiquitina/aislamiento & purificación
5.
Angew Chem Int Ed Engl ; 53(32): 8363-6, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24966058

RESUMEN

A one-step method is reported to synthesize hybrid gold nanoparticles (AuNPs) by reduction of HAuCl4 in acetic solution in the presence of collagen (Col), dicarboxylic acid-terminated polyethylene glycol (PEG), and cetyltetrammonium bromide (CTAB) mixed with hydoxyapatite (HAP) as surfactants. Such formation process of AuNPs was shown to be responsible for purple stains naturally formed on Egyptianizing archaeological gilded ivories from 8th BC Syria. The understanding of this formation mechanism, which most likely involves a step with hybrid AuNPs, allows the establishing of an authenticity marker of ancient gold-plated ivories.


Asunto(s)
Colágeno/química , Colágeno/síntesis química , Oro/química , Nanopartículas
6.
J Biol Chem ; 288(47): 33722-33737, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24100029

RESUMEN

Hypomorphic mutations in the X-linked human NEMO gene result in various forms of anhidrotic ectodermal dysplasia with immunodeficiency. NEMO function is mediated by two distal ubiquitin binding domains located in the regulatory C-terminal domain of the protein: the coiled-coil 2-leucine zipper (CC2-LZ) domain and the zinc finger (ZF) domain. Here, we investigated the effect of the D406V mutation found in the NEMO ZF of an ectodermal dysplasia with immunodeficiency patients. This point mutation does not impair the folding of NEMO ZF or mono-ubiquitin binding but is sufficient to alter NEMO function, as NEMO-deficient fibroblasts and Jurkat T lymphocytes reconstituted with full-length D406V NEMO lead to partial and strong defects in NF-κB activation, respectively. To further characterize the ubiquitin binding properties of NEMO ZF, we employed di-ubiquitin (di-Ub) chains composed of several different linkages (Lys-48, Lys-63, and linear (Met-1-linked)). We showed that the pathogenic mutation preferentially impairs the interaction with Lys-63 and Met-1-linked di-Ub, which correlates with its ubiquitin binding defect in vivo. Furthermore, sedimentation velocity and gel filtration showed that NEMO ZF, like other NEMO related-ZFs, binds mono-Ub and di-Ub with distinct stoichiometries, indicating the presence of a new Ub site within the NEMO ZF. Extensive mutagenesis was then performed on NEMO ZF and characterization of mutants allowed the proposal of a structural model of NEMO ZF in interaction with a Lys-63 di-Ub chain.


Asunto(s)
Displasia Ectodérmica/metabolismo , Quinasa I-kappa B/metabolismo , Síndromes de Inmunodeficiencia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación Missense , FN-kappa B/metabolismo , Ubiquitina/metabolismo , Sustitución de Aminoácidos , Animales , Displasia Ectodérmica/genética , Humanos , Quinasa I-kappa B/química , Quinasa I-kappa B/genética , Síndromes de Inmunodeficiencia/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Células Jurkat , Ratones , Ratones Mutantes , Modelos Moleculares , FN-kappa B/química , FN-kappa B/genética , Unión Proteica/genética , Estructura Terciaria de Proteína , Ubiquitina/genética , Dedos de Zinc
7.
Biochem Pharmacol ; 82(9): 1163-74, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21803029

RESUMEN

Aberrant and constitutive NF-κB activation are frequently reported in numerous tumor types, making its inhibition an attractive target for the treatment of certain cancers. NEMO (NF-κB essential modulator) is the crucial component of the canonical NF-κB pathway that mediates IκB kinase (IKK) complex activation. IKK activation resides in the ability of the C-terminal domain of NEMO to properly dimerize and interact with linear and K63-linked polyubiquitin chains. Here, we have identified a new NEMO peptide inhibitor, termed UBI (ubiquitin binding inhibitor) that derives from the NOA/NUB/UBAN ubiquitin binding site located in the CC2-LZ domain of NEMO. UBI specifically inhibits the NF-κB pathway at the IKK level in different cell types stimulated by a variety of NF-κB signals. Circular dichroïsm and fluorescence studies showed that UBI exhibits an increased α-helix character and direct, good-affinity binding to the NOA-LZ region of NEMO. We also showed that UBI targets NEMO in cells but its mode of inhibition is completely different from the previously reported LZ peptide (herein denoted NOA-LZ). UBI does not promote dissociation of NEMO subunits in cells but impairs the interaction between the NOA UBD of NEMO and polyubiquitin chains. Importantly, we showed that UBI efficiently competes with the in vitro binding of K63-linked chains, but not with linear chains. The identification of this new NEMO inhibitor emphasizes the important contribution of K63-linked chains for IKK activation in NF-κB signaling and would provide a new tool for studying the complex role of NF-κB in inflammation and cancer.


Asunto(s)
Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Ubiquitina/metabolismo , Sitios de Unión , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Quinasa I-kappa B/genética , Modelos Moleculares , FN-kappa B/antagonistas & inhibidores , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína
8.
J Mol Biol ; 395(1): 89-104, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19854204

RESUMEN

NEMO is an integral part of the IkappaB kinase complex and serves as a molecular switch by which the NF-kappaB signaling pathway can be regulated. Oligomerization and polyubiquitin (poly-Ub) binding, mediated through the regulatory CC2-LZ domain, were shown to be key features governing NEMO function, but the relationship between these two activities remains unclear. In this study, we solved the structure of this domain in complex with a designed ankyrin repeat protein, which helps its crystallization. We generated several NEMO mutants in this domain, including those associated with human diseases incontinentia pigmenti and immunodeficiency with or without anhidrotic ectodermal dysplasia. Analytical ultracentrifugation and thermal denaturation experiments were used to evaluate the dimerization properties of these mutants. A fluorescence-based assay was developed, as well, to quantify the interaction to monoubiquitin and poly-Ub chains. Moreover, the effect of these mutations was investigated for the full-length protein. We show that a proper folding of the ubiquitin-binding domain, termed NOA/UBAN/NUB, into a stable coiled-coil dimer is required but not sufficient for efficient interaction with poly-Ub. In addition, we show that binding to poly-Ub and, to a lesser extent, to monoubiquitin increases the stability of the NOA coiled-coil dimer. Collectively, these data provide structural insights into how several pathological mutations within and outside of the CC2-LZ's NOA ubiquitin binding site affect IkappaB kinase activation in the NF-kappaB signaling pathway.


Asunto(s)
Repetición de Anquirina , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Multimerización de Proteína , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Lisina/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , FN-kappa B/metabolismo , Poliubiquitina/metabolismo , Unión Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/farmacología
9.
FEBS J ; 274(10): 2540-51, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17419723

RESUMEN

NF-kappaB essential modulator (NEMO) plays an essential role in the nuclear factor kappaB (NF-kappaB) pathway as a modulator of the two other subunits of the IkappaB kinase (IKK) complex, i.e. the protein kinases, IKKalpha and IKKbeta. Previous reports all envision the IKK complex to be a static entity. Using glycerol-gradient ultracentrifugation, we observed stimulus-dependent dynamic IKK complex assembly. In wild-type fibroblasts, the kinases and a portion of cellular NEMO associate in a 350-kDa high-molecular-mass complex. In response to constitutive NF-kappaB stimulation by Tax, we observed NEMO recruitment and oligomerization to a shifted high-molecular-mass complex of 440 kDa which displayed increased IKK activity. This stimulus-dependent oligomerization of NEMO was also observed using fluorescence resonance energy transfer after a transient pulse with interleukin-1beta. In addition, fully activated, dimeric kinases not bound to NEMO were detected in these Tax-activated fibroblasts. By glycerol gradient ultracentrifugation, we also showed that: (a) in fibroblasts deficient in IKKalpha and IKKbeta, NEMO predominantly exists as a monomer; (b) in NEMO-deficient fibroblasts, IKKbeta dimers are present that are less stable than IKKalpha dimers. Intriguingly, in resting Rat-1 fibroblasts, 160-kDa IKKalpha-NEMO and IKKbeta-NEMO heterocomplexes were observed as well as a significant proportion of NEMO monomer. These results suggest that most NEMO molecules do not form a tripartite IKK complex with an IKKalpha-IKKbeta heterodimer as previously reported in the literature but, instead, NEMO is able to form a complex with the monomeric forms of IKKalpha and IKKbeta.


Asunto(s)
Quinasa I-kappa B/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/fisiología , Animales , Centrifugación por Gradiente de Densidad , Fibroblastos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Interleucina-1beta/farmacología , Ratones , FN-kappa B/fisiología , Estructura Cuaternaria de Proteína , Ratas , Proteínas Recombinantes/metabolismo
10.
Infect Immun ; 71(3): 1083-90, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12595418

RESUMEN

Listeria monocytogenes is considered as a potential live bacterial vector, particularly for the induction of CD8 T cells. The CD4 T-cell immune response triggered after enteral immunization of mice has not yet been thoroughly characterized. The dynamics of gamma interferon (IFN-gamma)- and interleukin-4 (IL-4)-secreting CD4 T cells were analyzed after priming through intragastric delivery of an attenuated delta actA recombinant L. monocytogenes strain expressing the Leishmania major LACK protein; a peptide of this protein, LACK(158-173) peptide (pLACK), is a well-characterized CD4 T-cell target in BALB/c mice. Five compartments were monitored: Peyer's patches, mesenteric lymph nodes (MLN), spleen, liver, and blood. A single intragastric inoculation of delta actA-LACK-LM in BALB/c mice led to colonization of the MLN and spleen at a significant level for at least 3 days. Efficient priming of IFN-gamma-secreting pLACK-reactive CD4 T cells was observed in all tested compartments. Interestingly, IL-4-secreting pLACK-reactive CD4 T cells were detectable at day 6 or 7 only in blood and liver. The absence of translocation of viable bacteria through the intestinal epithelium after further delta actA-LACK-LM inoculations was concomitant with the absence of an increase in the level of IFN-gamma secreted by the MLN, blood, and splenic pLACK-reactive Th1 T cells, although the levels remained significantly above the basal level. No change in this population size was detected in the spleen. However, an increase in the number of intragastric inoculations had a clinical beneficial effect in L. major-infected BALB/c mice. L. monocytogenes thus presents the potential of an efficient vector for induction of CD4 T cells when administered by the enteral route.


Asunto(s)
Antígenos de Protozoos , Linfocitos T CD4-Positivos/inmunología , Leishmania major/inmunología , Listeria monocytogenes/genética , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Vacunas Sintéticas/inmunología , Animales , Traslocación Bacteriana , Femenino , Vectores Genéticos , Inmunización , Interferón gamma/biosíntesis , Interleucina-4/biosíntesis , Listeria monocytogenes/inmunología , Ratones , Ratones Endogámicos BALB C , Especificidad de Órganos , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...