Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cancers (Basel) ; 16(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893223

RESUMEN

While cancer is one of the most documented diseases, how normal cells become cancerous is still debated. To address this question, in the first part of this review, we investigated the long succession of theories of carcinogenesis since antiquity. Initiated by Hippocrates, Aristotle, and Galen, the humoral theory interpreted cancer as an excess of acid, the black bile. The discovery of the circulation of blood by Harvey in 1628 destroyed the basis of the humoral theory but revived the spontaneous generation hypothesis which was also promoted by Aristotle. In 1859, the theory of microbes promoted by Pasteur demonstrated the irrelevance of this last theory and contributed to the emergence of the germ cancer theory, opposed to the cellular theory of cancer, in which cancer was supposed to be caused by microbes or transformed cells, respectively. These theories were progressively refined by the notions of initiation, promotion, and progression thanks to advances in mutagenesis and cellular proliferation. In the second part of this review, recent discoveries and paradigms in carcinogenesis, notably the role of the protein ATM, a major actor of the stress response involved in both mutagenesis and cellular proliferation, were discussed to better understand the current state of the art of carcinogenesis.

2.
Radiat Res ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802101

RESUMEN

Radiobiological data, whether obtained at the clinical, biological or molecular level has significantly contributed to a better description and prediction of the individual dose-response to ionizing radiation and a better estimation of the radiation-induced risks. Particularly, over the last seventy years, the amount of radiobiological data has considerably increased, and permitted the mathematical formulas describing dose-response to become less empirical. A better understanding of the basic radiobiological mechanisms has also contributed to establish quantitative inter-correlations between clinical, biological and molecular biomarkers, refining again the mathematical models of description. Today, big data approaches and, more recently, artificial intelligence may finally complete and secure this long process of thinking from the multi-scale description of radiation-induced events to their prediction. Here, we reviewed the major dose-response models applied in radiobiology for quantifying molecular and cellular radiosensitivity and aimed to explain their evolution: Specifically, we highlighted the advances concerning the target theory with the cell survival models and the progressive introduction of the DNA repair process in the mathematical models. Furthermore, we described how the technological advances have changed the description of DNA double-strand break (DSB) repair kinetics by introducing the important notion of DSB recognition, independent of that of DSB repair. Initially developed separately, target theory on one hand and, DSB recognition and repair, on the other hand may be now fused into a unified model involving the cascade of phosphorylations mediated by the ATM kinase in response to any genotoxic stress.

3.
Biomolecules ; 13(12)2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38136617

RESUMEN

Menkes' disease (MD) and Wilson's disease (WD) are two major copper (Cu) metabolism-related disorders caused by mutations of the ATP7A and ATP7B ATPase gene, respectively. While Cu is involved in DNA strand breaks signaling and repair, the response of cells from both diseases to ionizing radiation, a common DNA strand breaks inducer, has not been investigated yet. To this aim, three MD and two WD skin fibroblasts lines were irradiated at two Gy X-rays and clonogenic cell survival, micronuclei, anti-γH2AX, -pATM, and -MRE11 immunofluorescence assays were applied to evaluate the DNA double-strand breaks (DSB) recognition and repair. MD and WD cells appeared moderately radiosensitive with a delay in the radiation-induced ATM nucleo-shuttling (RIANS) associated with impairments in the DSB recognition. Such delayed RIANS was notably caused in both MD and WD cells by a highly expressed ATP7B protein that forms complexes with ATM monomers in cytoplasm. Interestingly, a Cu pre-treatment of cells may influence the activity of the MRE11 nuclease and modulate the radiobiological phenotype. Lastly, some high-passage MD cells cultured in routine may transform spontaneously becoming immortalized. Altogether, our findings suggest that exposure to ionizing radiation may impact on clinical features of MD and WD, which requires cautiousness when affected patients are submitted to radiodiagnosis and, eventually, radiotherapy.


Asunto(s)
Degeneración Hepatolenticular , Síndrome del Pelo Ensortijado , Humanos , Cobre/metabolismo , Proteínas Quinasas/metabolismo , Radiación Ionizante , Síndrome del Pelo Ensortijado/genética , Síndrome del Pelo Ensortijado/metabolismo , Degeneración Hepatolenticular/genética , Fibroblastos/metabolismo , ADN/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
4.
Cells ; 12(16)2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37626928

RESUMEN

Studies about radiation-induced human cataractogenesis are generally limited by (1) the poor number of epithelial lens cell lines available (likely because of the difficulties of cell sampling and amplification) and (2) the lack of reliable biomarkers of the radiation-induced aging process. We have developed a mechanistic model of the individual response to radiation based on the nucleoshuttling of the ATM protein (RIANS). Recently, in the frame of the RIANS model, we have shown that, to respond to permanent endo- and exogenous stress, the ATM protein progressively agglutinates around the nucleus attracted by overexpressed perinuclear ATM-substrate protein. As a result, perinuclear ATM crowns appear to be an interesting biomarker of aging. The radiobiological characterization of the two human epithelial lens cell lines available and the four porcine epithelial lens cell lines that we have established showed delayed RIANS. The BFSP2 protein, found specifically overexpressed around the lens cell nucleus and interacting with ATM, may be a specific ATM-substrate protein facilitating the formation of perinuclear ATM crowns in lens cells. The perinuclear ATM crowns were observed inasmuch as the number of culture passages is high. Interestingly, 2 Gy X-rays lead to the transient disappearance of the perinuclear ATM crowns. Altogether, our findings suggest a strong influence of the ATM protein in radiation-induced cataractogenesis.


Asunto(s)
Cristalino , Humanos , Porcinos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Envejecimiento , Línea Celular , Núcleo Celular
5.
Cancers (Basel) ; 15(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37568795

RESUMEN

Stereotactic body radiation therapy (SBRT) has made the hypofractionation of high doses delivered in a few sessions more acceptable. While the benefits of hypofractionated SBRT have been attributed to additional vascular, immune effects, or specific cell deaths, a radiobiological and mechanistic model is still needed. By considering each session of SBRT, the dose is divided into hundreds of minibeams delivering some fractions of Gy. In such a dose range, the hypersensitivity to low dose (HRS) phenomenon can occur. HRS produces a biological effect equivalent to that produced by a dose 5-to-10 times higher. To examine whether HRS could contribute to enhancing radiation effects under SBRT conditions, we exposed tumor cells of different HRS statuses to SBRT. Four human HRS-positive and two HRS-negative tumor cell lines were exposed to different dose delivery modes: a single dose of 0.2 Gy, 2 Gy, 10 × 0.2 Gy, and a single dose of 2 Gy using a non-coplanar isocentric minibeams irradiation mode were delivered. Anti-γH2AX immunofluorescence, assessing DNA double-strand breaks (DSB), was applied. In the HRS-positive cells, the DSB produced by 10 × 0.2 Gy and 2 Gy, delivered by tens of minibeams, appeared to be more severe, and they provided more highly damaged cells than in the HRS-negative cells, suggesting that more severe DSB are induced in the "SBRT modes" conditions when HRS occurs in tumor. Each SBRT session can be viewed as hyperfractionated dose delivery by means of hundreds of low dose minibeams. Under current SBRT conditions (i.e., low dose per minibeam and not using ultra-high dose-rate), the response of HRS-positive tumors to SBRT may be enhanced significantly. Interestingly, similar conclusions were reached with HRS-positive and HRS-negative untransformed fibroblast cell lines, suggesting that the HRS phenomenon may also impact the risk of post-RT tissue overreactions.

6.
Cells ; 12(13)2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37443782

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative dementia, for which the molecular origins, genetic predisposition and therapeutic approach are still debated. In the 1980s, cells from AD patients were reported to be sensitive to ionizing radiation. In order to examine the molecular basis of this radiosensitivity, the ATM-dependent DNA double-strand breaks (DSB) signaling and repair were investigated by applying an approach based on the radiation-induced ataxia telangiectasia-mutated (ATM) protein nucleoshuttling (RIANS) model. Early after irradiation, all ten AD fibroblast cell lines tested showed impaired DSB recognition and delayed RIANS. AD fibroblasts specifically showed spontaneous perinuclear localization of phosphorylated ATM (pATM) forms. To our knowledge, such observation has never been reported before, and by considering the role of the ATM kinase in the stress response, it may introduce a novel interpretation of accelerated aging. Our data and a mathematical approach through a brand-new model suggest that, in response to a progressive and cumulative stress, cytoplasmic ATM monomers phosphorylate the APOE protein (pAPOE) close to the nuclear membrane and aggregate around the nucleus, preventing their entry in the nucleus and thus the recognition and repair of spontaneous DSB, which contributes to the aging process. Our findings suggest that pATM and/or pAPOE may serve as biomarkers for an early reliable diagnosis of AD on any fibroblast sample.


Asunto(s)
Enfermedad de Alzheimer , Reparación del ADN , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Núcleo Celular/metabolismo
7.
Biomolecules ; 13(3)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36979459

RESUMEN

The radiation protection strategy with chemical agents has long been based on an antioxidative approach consisting in reducing the number of radical oxygen and nitrogen species responsible for the formation of the radiation-induced (RI) DNA damage, notably the DNA double-strand breaks (DSB), whose subset participates in the RI lethal effect as unrepairable damage. Conversely, a DSB repair-stimulating strategy that may be called the "pro-episkevic" approach (from the ancient Greek episkeve, meaning repair) can be proposed. The pro-episkevic approach directly derives from a mechanistic model based on the RI nucleoshuttling of the ATM protein (RIANS) and contributes to increase the number of DSB managed by NHEJ, the most predominant DSB repair and signaling pathway in mammalians. Here, three radioresistant and three radiosensitive human fibroblast cell lines were pretreated with antioxidative agents (N-acetylcysteine or amifostine) or to two pro-episkevic agents (zoledronate or pravastatin or both (ZOPRA)) before X-ray irradiation. The fate of the RI DSB was analyzed by using γH2AX and pATM immunofluorescence. While amifostine pretreatment appeared to be the most efficient antioxidative process, ZOPRA shows the most powerful radiation protection, suggesting that the pro-episkevic strategy may be an alternative to the antioxidative one. Additional investigations are needed to develop some new drugs that may elicit both antioxidative and pro-episkevic properties and to quantify the radiation protection action of both types of drugs applied concomitantly.


Asunto(s)
Amifostina , Protectores contra Radiación , Animales , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Protectores contra Radiación/farmacología , Roturas del ADN de Doble Cadena , Antioxidantes/farmacología , Amifostina/farmacología , Reparación del ADN , Mamíferos/metabolismo
8.
Biomolecules ; 13(3)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36979480

RESUMEN

Radiation-induced bystander effects (RIBE) describe the biological events occurring in non-targeted cells in the vicinity of irradiated ones. Various experimental procedures have been used to investigate RIBE. Interestingly, most micro-irradiation experiments have been performed with alpha particles, whereas most medium transfers have been done with X-rays. With their high fluence, synchrotron X-rays represent a real opportunity to study RIBE by applying these two approaches with the same radiation type. The RIBE induced in human fibroblasts by the medium transfer approach resulted in a generation of DNA double-strand breaks (DSB) occurring from 10 min to 4 h post-irradiation. Such RIBE was found to be dependent on dose and on the number of donor cells. The RIBE induced with the micro-irradiation approach produced DSB with the same temporal occurrence. Culture media containing high concentrations of phosphates were found to inhibit RIBE, while media rich in calcium increased it. The contribution of the RIBE to the biological dose was evaluated after synchrotron X-rays, media transfer, micro-irradiation, and 6 MeV photon irradiation mimicking a standard radiotherapy session: the RIBE may represent less than 1%, about 5%, and about 20% of the initial dose, respectively. However, RIBE may result in beneficial or otherwise deleterious effects in surrounding tissues according to their radiosensitivity status and their capacity to release Ca2+ ions in response to radiation.


Asunto(s)
Efecto Espectador , Calcio , Humanos , Rayos X , Calcio/farmacología , Efecto Espectador/efectos de la radiación , Roturas del ADN de Doble Cadena , ADN
9.
Cancers (Basel) ; 15(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36900274

RESUMEN

Very early after their discovery, X-rays were used in multiple medical applications, such as treatments against cancer, inflammation and pain. Because of technological constraints, such applications involved X-ray doses lower than 1 Gy per session. Progressively, notably in oncology, the dose per session increased. However, the approach of delivering less than 1 Gy per session, now called low-dose radiation therapy (LDRT), was preserved and is still applied in very specific cases. More recently, LDRT has also been applied in some trials to protect against lung inflammation after COVID-19 infection or to treat degenerative syndromes such as Alzheimer's disease. LDRT illustrates well the discontinuity of the dose-response curve and the counterintuitive observation that a low dose may produce a biological effect higher than a certain higher dose. Even if further investigations are needed to document and optimize LDRT, the apparent paradox of some radiobiological effects specific to low dose may be explained by the same mechanistic model based on the radiation-induced nucleoshuttling of the ATM kinase, a protein involved in various stress response pathways.

10.
Tumori ; 109(2): 173-185, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35578746

RESUMEN

OBJECTIVE: Radiotherapy (RT) against head and neck squamous cell carcinomas (HNSCC) may lead to severe toxicity in 30-40% of patients. The normal tissue complication probability (NTCP) models, based on dosimetric data refined the normal tissue dose/volume tolerance guidelines. In parallel, the radiation-induced nucleoshuttling (RIANS) of the Ataxia-Telangiectasia Mutated protein (pATM) is a predictive approach of individual intrinsic radiosensitivity. Here, we combined NTCP with RADIODTECT©, a blood assay derived from the RIANS model, to predict RT toxicity in HNSCC patients. METHODS: RADIODTECT© cutoff values (i.e. 57.8 ng/mL for grade⩾2 toxicity and 46 ng/mL for grade⩾3 toxicity) have been previously assessed. Validation was performed on a prospective cohort of 36 HNSCC patients treated with postoperative RT. Toxicity was graded with the Common Terminology Criteria for Adverse Events (CTCAE) scale and two criteria were considered: grade⩾2 oral mucositis (OM2), grade⩾3 mucositis (OM3) and grade⩾2 dysphagia (DY2), grade⩾3 dysphagia (DY3). pATM quantification was assessed in lymphocytes of HNSCC patients. The discrimination power of the pATM assay was evaluated through the Area Under the Receiver Operator Characteristics Curve (AUC-ROC). Two previously described NTCP models were considered, including the dose to the oral cavity and the mean dose to the parotid glands (OM2 and OM3) and the dose to the oral cavity, to the larynx and the volume of pharyngeal constrictor muscles (DY2 and DY3). RESULTS: Combining NTCP models with RADIODTECT© blood test improved the AUC-ROC. Considering the prediction of mucositis, AUC-ROCNTCP+RADIODTECT©=0.80 was for OM2, and AUC-ROCNTCP+RADIODTECT©=0.78 for OM3. Considering the prediction of acute dysphagia, AUC-ROCNTCP+RADIODTECT©=0.71 for DY2 and for DY3. CONCLUSIONS: Combining NTCP models with a radiosensitivity biomarker might significantly improve the prediction of toxicities for HNSCC patients.


Asunto(s)
Trastornos de Deglución , Neoplasias de Cabeza y Cuello , Mucositis , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Proyectos Piloto , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/complicaciones , Trastornos de Deglución/etiología , Estudios Prospectivos , Disprosio , Dosificación Radioterapéutica , Tolerancia a Radiación/genética , Biomarcadores , Probabilidad
11.
Front Public Health ; 11: 1306455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38328545

RESUMEN

Introduction: Residential exposure is estimated to be responsible for nearly 10% of lung cancers in 2015 in France, making it the second leading cause, after tobacco. The Auvergne-Rhône-Alpes region, in the southwest of France, is particularly affected by this exposure as 30% of the population lives in areas with medium or high radon potential. This study aimed to investigate the impact of radon exposure on the survival of lung cancer patients. Methods: In this single-center study, patients with a histologically confirmed diagnosis of lung cancer, and newly managed, were prospectively included between 2014 and 2020. Univariate and multivariate survival analyses were carried out using a non-proportional risk survival model to consider variations in risk over time. Results: A total of 1,477 patients were included in the analysis. In the multivariate analysis and after adjustment for covariates, radon exposure was not statistically associated with survival of bronchopulmonary cancers (HR = 0.82 [0.54-1.23], HR = 0.92 [0.72-1.18], HR = 0.95 [0.76-1.19] at 1, 3, and 5 years, respectively, for patients residing in category 2 municipalities; HR = 0.87 [0.66-1.16], HR = 0.92 [0.76-1.10], and HR = 0.89 [0.75-1.06] at 1, 3, and 5 years, respectively, for patients residing in category 3 municipalities). Discussion: Although radon exposure is known to increase the risk of lung cancer, in the present study, no significant association was found between radon exposure and survival of bronchopulmonary cancers.


Asunto(s)
Contaminación del Aire Interior , Neoplasias Pulmonares , Radón , Humanos , Estudios de Casos y Controles , Exposición a Riesgos Ambientales/efectos adversos , Radón/efectos adversos , Radón/análisis
12.
Cancers (Basel) ; 14(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36551628

RESUMEN

There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.

13.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142346

RESUMEN

Tissue overreactions (OR), whether called adverse effects, radiotoxicity, or radiosensitivity reactions, may occur during or after anti-cancer radiotherapy (RT). They represent a medical, economic, and societal issue and raise the question of individual response to radiation. To predict and prevent them are among the major tasks of radiobiologists. To this aim, radiobiologists have developed a number of predictive assays involving different cellular models and endpoints. To date, while no consensus has been reached to consider one assay as the best predictor of the OR occurrence and severity, radiation oncologists have proposed consensual scales to quantify OR in six different grades of severity, whatever the organ/tissue concerned and their early/late features. This is notably the case with the Common Terminology Criteria for Adverse Events (CTCAE). Few radiobiological studies have used the CTCAE scale as a clinical endpoint to evaluate the statistical robustness of the molecular and cellular predictive assays in the largest range of human radiosensitivity. Here, by using 200 untransformed skin fibroblast cell lines derived from RT-treated cancer patients eliciting OR in the six CTCAE grades range, correlations between CTCAE grades and the major molecular and cellular endpoints proposed to predict OR (namely, cell survival at 2 Gy (SF2), yields of micronuclei, recognized and unrepaired DSBs assessed by immunofluorescence with γH2AX and pATM markers) were examined. To our knowledge, this was the first time that the major radiosensitivity endpoints were compared together with the same cohort and irradiation conditions. Both SF2 and the maximal number of pATM foci reached after 2 Gy appear to be the best predictors of the OR, whatever the CTCAE grades range. All these major radiosensitivity endpoints are mathematically linked in a single mechanistic model of individual response to radiation in which the ATM kinase plays a major role.


Asunto(s)
Proteínas Quinasas , Tolerancia a Radiación , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Biomarcadores/metabolismo , Supervivencia Celular/efectos de la radiación , Reparación del ADN , Fibroblastos/metabolismo , Humanos , Proteínas Quinasas/metabolismo , Tolerancia a Radiación/efectos de la radiación
14.
Eur Radiol Exp ; 6(1): 17, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35385987

RESUMEN

BACKGROUND: While computed tomography (CT) exams are the major cause of medical exposure to ionising radiation, the radiation-induced risks must be documented. We investigated the impact of the cellular models and individual factor on the deoxyribonucleic acid double-strand breaks (DSB) recognition and repair in human skin fibroblasts and brain astrocytes exposed to current head CT scan conditions. METHOD: Nine human primary fibroblasts and four human astrocyte cell lines with different levels of radiosensitivity/susceptibility were exposed to a standard head CT scan exam using adapted phantoms. Cells were exposed to a single-helical (37.4 mGy) and double-helical (37.4 mGy + 5 min + 37.4 mGy) examination. DSB signalling and repair was assessed through anti-γH2AX and anti-pATM immunofluorescence. RESULTS: Head CT scan induced a significant number of γH2AX and pATM foci. The kinetics of both biomarkers were found strongly dependent on the individual factor. Particularly, in cells from radiosensitive/susceptible patients, DSB may be significantly less recognised and/or repaired, whatever the CT scan exposure conditions. Similar conclusions were reached with astrocytes. CONCLUSIONS: Our results highlight the importance of both individual and tissue factors in the recognition and repair of DSB after current head CT scan exams. Further investigations are needed to better define the radiosensitivity/susceptibility of individual humans.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Fibroblastos/metabolismo , Humanos , Tomografía Computarizada por Rayos X
15.
Eur Radiol Exp ; 6(1): 14, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301607

RESUMEN

BACKGROUND: While computed tomography (CT) exams are the major cause of medical exposure to ionising radiation, there is increasing evidence that the potential radiation-induced risks must be documented. We investigated the impact of cellular models and individual factor on the deoxyribonucleic acid double-strand breaks (DSB) recognition and repair in human fibroblasts and mammary epithelial cells exposed to current chest CT scan conditions. METHOD: Twelve human primary fibroblasts and four primary human mammary epithelial cell lines with different levels of radiosensitivity/susceptibility were exposed to a standard chest CT scan exam using adapted phantoms. Cells were exposed to a single helical irradiation (14.4 mGy) or to a topogram followed, after 1 min, by one single helical examination (1.1 mGy + 14.4 mGy). DSB signalling and repair was assessed through anti-γH2AX and anti-pATM immunofluorescence. RESULTS: Chest CT scan induced a significant number of γH2AX and pATM foci. The kinetics of both biomarkers were found strongly dependent on the individual factor. The topogram may also influence the biological response of radiosensitive/susceptible fibroblasts to irradiation. Altogether, our findings show that a chest CT scan exam may result in 2 to 3 times more unrepaired DSB in cells from radiosensitive/susceptible patients. CONCLUSIONS: Both individual and tissue factors in the recognition and repair of DSB after current CT scan exams are important. Further investigations are needed to better define the radiosensitivity/susceptibility of individual humans.


Asunto(s)
Roturas del ADN de Doble Cadena , Histonas , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , Histonas/metabolismo , Histonas/efectos de la radiación , Humanos , Tomografía Computarizada por Rayos X
16.
Biomolecules ; 12(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35204751

RESUMEN

A mechanistic model from radiobiology has emerged by pointing out that the radiation-induced nucleo-shuttling of the ATM protein (RIANS) initiates the recognition, the repair of DNA double-strand breaks (DSB), and the final response to genotoxic stress. More recently, we provided evidence in this journal that the RIANS model is also relevant for exposure to metal ions. To document the role of the ATM-dependent DSB repair and signaling after pesticide exposure, we applied six current pesticides of domestic and environmental interest (lindane, atrazine, glyphosate, permethrin, pentachlorophenol and thiabendazole) to human skin fibroblast and brain cells. Our findings suggest that each pesticide tested may induce DSB at a rate that depends on the pesticide concentration and the RIANS status of cells. At specific concentration ranges, the nucleo-shuttling of ATM can be delayed, which impairs DSB recognition and repair, and contributes to toxicity. Interestingly, the combination of copper sulfate and thiabendazole or glyphosate was found to have additive or supra-additive effects on DSB recognition and/or repair. A general mechanistic model of the biological response to metal and/or pesticide is proposed to define quantitative endpoints for toxicity.


Asunto(s)
Plaguicidas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Plaguicidas/toxicidad
17.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35163494

RESUMEN

Usher syndrome (USH) is a rare autosomal recessive disease characterized by the combination of hearing loss, visual impairment due to retinitis pigmentosa, and in some cases vestibular dysfunctions. Studies published in the 1980s reported that USH is associated with cellular radiosensitivity. However, the molecular basis of this particular phenotype has not yet been documented. The aim of this study was therefore to document the radiosensitivity of USH1-a subset of USH-by examining the radiation-induced nucleo-shuttling of ATM (RIANS), as well as the functionality of the repair and signaling pathways of the DNA double-strand breaks (DSBs) in three skin fibroblasts derived from USH1 patients. The clonogenic cell survival, the micronuclei, the nuclear foci formed by the phosphorylated forms of the X variant of the H2A histone (É£H2AX), the phosphorylated forms of the ATM protein (pATM), and the meiotic recombination 11 nuclease (MRE11) were used as cellular and molecular endpoints. The interaction between the ATM and USH1 proteins was also examined by proximity ligation assay. The results showed that USH1 fibroblasts were associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired DSB recognition but normal DSB repair, likely caused by a delayed RIANS, suggesting a possible sequestration of ATM by some USH1 proteins overexpressed in the cytoplasm. To our knowledge, this report is the first radiobiological characterization of cells from USH1 patients at both molecular and cellular scales.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Tolerancia a Radiación/genética , Síndromes de Usher/enzimología , Síndromes de Usher/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Clonales , Difosfonatos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibroblastos/efectos de la radiación , Histonas/metabolismo , Humanos , Cinética , Proteína Homóloga de MRE11/metabolismo , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Modelos Biológicos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/efectos de la radiación
18.
Mol Neurobiol ; 59(1): 556-573, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34727321

RESUMEN

Neurofibromatosis type 1 (NF1) is a disease characterized by high occurrence of benign and malignant brain tumours and caused by mutations of the neurofibromin protein. While there is an increasing evidence that NF1 is associated with radiosensitivity and radiosusceptibility, few studies have dealt with the molecular and cellular radiation response of cells from individuals with NF1. Here, we examined the ATM-dependent signalling and repair pathways of the DNA double-strand breaks (DSB), the key-damage induced by ionizing radiation, in skin fibroblast cell lines from 43 individuals with NF1. Ten minutes after X-rays irradiation, quiescent NF1 fibroblasts showed abnormally low rate of recognized DSB reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones. Irradiated NF1 fibroblasts also presented a delayed radiation-induced nucleoshuttling of the ATM kinase (RIANS), potentially due to a specific binding of ATM to the mutated neurofibromin in cytoplasm. Lastly, NF1 fibroblasts showed abnormally high MRE11 nuclease activity suggesting a high genomic instability after irradiation. A combination of bisphosphonates and statins complemented these impairments by accelerating the RIANS, increasing the yield of recognized DSB and reducing genomic instability. Data from NF1 fibroblasts exposed to radiation in radiotherapy and CT scan conditions confirmed that NF1 belongs to the group of syndromes associated with radiosensitivity and radiosusceptibility.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Supervivencia Celular/efectos de la radiación , Reparación del ADN/efectos de la radiación , Difosfonatos/farmacología , Fibroblastos/efectos de la radiación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neurofibromatosis 1/radioterapia , Radiación Ionizante , Línea Celular , Supervivencia Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Neurofibromatosis 1/metabolismo
19.
Lancet Oncol ; 22(12): e562-e574, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34856153

RESUMEN

The management of patients with cancer and Li-Fraumeni or heritable TP53-related cancer syndromes is complex because of their increased risk of developing second malignant neoplasms after genotoxic stresses such as systemic treatments or radiotherapy (radiosusceptibility). Clinical decision making also integrates the risks of normal tissue toxicity and sequelae (radiosensitivity) and tumour response to radiotherapy (radioresistance and radiocurability). Radiotherapy should be avoided in patients with cancer and Li-Fraumeni or heritable TP53 cancer-related syndromes, but overall prognosis might be poor without radiotherapy: radioresistance in these patients seems similar to or worse than that of the general population. Radiosensitivity in germline TP53 variant carriers seems similar to that in the general population. The risk of second malignant neoplasms according to germline TP53 variant and the patient's overall oncological prognosis should be assessed during specialised multidisciplinary staff meetings. Radiotherapy should be avoided whenever other similarly curative treatment options are available. In other cases, it should be adapted to minimise the risk of second malignant neoplasms in patients who still require radiotherapy despite its genotoxicity, in view of its potential benefit. Adaptations might be achieved through the reduction of irradiated volumes using proton therapy, non-ionising diagnostic procedures, image guidance, and minimal stray radiation. Non-ionising imaging should become more systematic. Radiotherapy approaches that might result in a lower probability of misrepaired DNA damage (eg, particle therapy biology and tumour targeting) are an area of investigation.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Síndrome de Li-Fraumeni/radioterapia , Neoplasias Inducidas por Radiación/patología , Síndromes Neoplásicos Hereditarios/radioterapia , Radioterapia/efectos adversos , Proteína p53 Supresora de Tumor/genética , Humanos , Síndrome de Li-Fraumeni/genética , Neoplasias Inducidas por Radiación/etiología , Síndromes Neoplásicos Hereditarios/patología , Pronóstico
20.
Biomolecules ; 11(10)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34680095

RESUMEN

Despite a considerable amount of data, the molecular and cellular bases of the toxicity due to metal exposure remain unknown. Recent mechanistic models from radiobiology have emerged, pointing out that the radiation-induced nucleo-shuttling of the ATM protein (RIANS) initiates the recognition and the repair of DNA double-strand breaks (DSB) and the final response to genotoxic stress. In order to document the role of ATM-dependent DSB repair and signalling after metal exposure, we applied twelve different metal species representing nine elements (Al, Cu, Zn Ni, Pd, Cd, Pb, Cr, and Fe) to human skin, mammary, and brain cells. Our findings suggest that metals may directly or indirectly induce DSB at a rate that depends on the metal properties and concentration, and tissue type. At specific metal concentration ranges, the nucleo-shuttling of ATM can be delayed which impairs DSB recognition and repair and contributes to toxicity and carcinogenicity. Interestingly, as observed after low doses of ionizing radiation, some phenomena equivalent to the biological response observed at high metal concentrations may occur at lower concentrations. A general mechanistic model of the biological response to metal exposure based on the nucleo-shuttling of ATM is proposed to describe the metal-induced stress response and to define quantitative endpoints for toxicity and carcinogenicity.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/química , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Metales/química , Aluminio/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/efectos de la radiación , Cadmio/farmacología , Cromo/farmacología , Cobre/farmacología , Reparación del ADN/efectos de la radiación , Humanos , Hierro/farmacología , Plomo/farmacología , Metales/farmacología , Metales/toxicidad , Níquel/farmacología , Paladio/farmacología , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA