Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(9): e1010546, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721937

RESUMEN

Genome-wide association studies (GWAS) are commonly used to identify genomic variants that are associated with complex traits, and estimate the magnitude of this association for each variant. However, it has been widely observed that the association estimates of variants tend to be lower in a replication study than in the study that discovered those associations. A phenomenon known as Winner's Curse is responsible for this upward bias present in association estimates of significant variants in the discovery study. We review existing Winner's Curse correction methods which require only GWAS summary statistics in order to make adjustments. In addition, we propose modifications to improve existing methods and propose a novel approach which uses the parametric bootstrap. We evaluate and compare methods, first using a wide variety of simulated data sets and then, using real data sets for three different traits. The metric, estimated mean squared error (MSE) over significant SNPs, was primarily used for method assessment. Our results indicate that widely used conditional likelihood based methods tend to perform poorly. The other considered methods behave much more similarly, with our proposed bootstrap method demonstrating very competitive performance. To complement this review, we have developed an R package, 'winnerscurse' which can be used to implement these various Winner's Curse adjustment methods to GWAS summary statistics.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos , Funciones de Verosimilitud , Estudios de Asociación Genética , Sesgo , Fenotipo , Polimorfismo de Nucleótido Simple/genética
2.
Cell Host Microbe ; 26(4): 527-541.e5, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600503

RESUMEN

The human gut contains a vast array of viruses, mostly bacteriophages. The majority remain uncharacterized, and their roles in shaping the gut microbiome and in impacting on human health remain poorly understood. We performed longitudinal metagenomic analysis of fecal viruses in healthy adults that reveal high temporal stability, individual specificity, and correlation with the bacterial microbiome. Using a database-independent approach that uses most of the sequencing data, we uncovered the existence of a stable, numerically predominant individual-specific persistent personal virome. Clustering of viral genomes and de novo taxonomic annotation identified several groups of crAss-like and Microviridae bacteriophages as the most stable colonizers of the human gut. CRISPR-based host prediction highlighted connections between these stable viral communities and highly predominant gut bacterial taxa such as Bacteroides, Prevotella, and Faecalibacterium. This study provides insights into the structure of the human gut virome and serves as an important baseline for hypothesis-driven research.


Asunto(s)
Bacteroides/virología , Faecalibacterium/virología , Microbioma Gastrointestinal/genética , Microviridae/genética , Prevotella/virología , Bacteroides/aislamiento & purificación , Faecalibacterium/aislamiento & purificación , Humanos , Estudios Longitudinales , Metagenoma/genética , Microviridae/clasificación , Microviridae/aislamiento & purificación , Prevotella/aislamiento & purificación , Carga Viral
3.
Microbiome ; 6(1): 68, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29631623

RESUMEN

BACKGROUND: Recent studies have demonstrated that the human gut is populated by complex, highly individual and stable communities of viruses, the majority of which are bacteriophages. While disease-specific alterations in the gut phageome have been observed in IBD, AIDS and acute malnutrition, the human gut phageome remains poorly characterised. One important obstacle in metagenomic studies of the human gut phageome is a high level of discrepancy between results obtained by different research groups. This is often due to the use of different protocols for enriching virus-like particles, nucleic acid purification and sequencing. The goal of the present study is to develop a relatively simple, reproducible and cost-efficient protocol for the extraction of viral nucleic acids from human faecal samples, suitable for high-throughput studies. We also analyse the effect of certain potential confounding factors, such as storage conditions, repeated freeze-thaw cycles, and operator bias on the resultant phageome profile. Additionally, spiking of faecal samples with an exogenous phage standard was employed to quantitatively analyse phageomes following metagenomic sequencing. Comparative analysis of phageome profiles to bacteriome profiles was also performed following 16S rRNA amplicon sequencing. RESULTS: Faecal phageome profiles exhibit an overall greater individual specificity when compared to bacteriome profiles. The phageome and bacteriome both exhibited moderate change when stored at + 4 °C or room temperature. Phageome profiles were less impacted by multiple freeze-thaw cycles than bacteriome profiles, but there was a greater chance for operator effect in phageome processing. The successful spiking of faecal samples with exogenous bacteriophage demonstrated large variations in the total viral load between individual samples. CONCLUSIONS: The faecal phageome sequencing protocol developed in this study provides a valuable additional view of the human gut microbiota that is complementary to 16S amplicon sequencing and/or metagenomic sequencing of total faecal DNA. The protocol was optimised for several confounding factors that are encountered while processing faecal samples, to reduce discrepancies observed within and between research groups studying the human gut phageome. Rapid storage, limited freeze-thaw cycling and spiking of faecal samples with an exogenous phage standard are recommended for optimum results.


Asunto(s)
Bacteriófagos/genética , Heces/virología , Microbioma Gastrointestinal , Metagenoma , Metagenómica , Bacterias/clasificación , Bacterias/genética , Humanos , Metagenómica/métodos , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados
4.
Br J Pharmacol ; 175(3): 412-418, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29266197

RESUMEN

Bacteriophage (phage) therapy has encountered both enthusiasm and scepticism in the past century. New antimicrobial strategies against lethal pathogens are now a top priority for the World Health Organization, and although compassionate use of phages recently met with significant success, regulated clinical interventions seem unlikely in the near future. The hundredth anniversary of their discovery seems an appropriate time for a revival of phage therapy, particularly as the dilemma of antibiotic resistance grows. Phages are ubiquitous in the environment, on our food and in and on our bodies. Their influence on human health is currently being evaluated, and in this mini-review, we examine data from recent metagenomic studies that propose a role for phages in the structure of the microbiome and in health and disease. We assess evidence for phages as vehicles for gene transfer in the context of antibiotic resistance and discuss challenges and opportunities along the critical path from phage discovery to a patient-focused pharmaceutical intervention.


Asunto(s)
Antibacterianos/uso terapéutico , Bacteriófagos/fisiología , Industria Farmacéutica/tendencias , Animales , Industria Farmacéutica/métodos , Humanos
5.
FEMS Microbiol Lett ; 363(22)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27974392

RESUMEN

Bacteriophages (phages) or bacterial viruses have long been proposed as an alternative therapy against antibiotic-resistant bacteria such as Escherichia coli Even though poorly documented in the scientific literature, a long clinical history of phage therapy in countries such as Russia and Georgia suggests potential value in the use of phages as antibacterial agents. Escherichia coli is responsible for a wide range of diseases, intestinal (diarrhoea) and extraintestinal (UTI, septicaemia, pneumoniae, meningitis), making it an ideal target for phage therapy. This review discusses the latest research focusing on the potential of phage therapy to tackle E. coli-related illnesses. No intact phages are approved in EU or USA for human therapeutic use, but many successful in vitro and in vivo studies have been reported. However, additional research focused on in vivo multispecies models and human trials are required if phage therapy targeting E. coli pathotypes can be a story with happy end.


Asunto(s)
Colifagos/crecimiento & desarrollo , Infecciones por Escherichia coli/terapia , Escherichia coli/virología , Enfermedades Transmitidas por los Alimentos/terapia , Terapia de Fagos/métodos , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos
6.
Plasmid ; 49(2): 130-42, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12726766

RESUMEN

The lactococcal plasmid pCI658 (58 kb) isolated from Lactococcus lactis ssp. cremoris HO2 encodes the production of a hydrophilic exopolysaccharide (EPS) which consists primarily of galactose and glucuronic acid and which interferes with adsorption of phages ø712 and øc2 to cell surface receptors. Examination of the nucleotide sequence of a 21.8-kb region of the plasmid revealed a large genetic cluster consisting of at least 23 putative EPS biosynthetic determinants in addition to the presence of insertion sequences at the 5(') and 3(') ends. According to homology searches, the genes were organized in specific regions involved in regulation, synthesis and export of the EPS. The predicted products of individual genes exhibited significant homology to exopolysaccharide, capsular polysaccharide (CPS), and lipopolysaccharide (LPS) gene products from a variety of Gram positive and Gram negative bacteria. Evidence of a gene encoding UDP-glucose dehydrogenase is also presented and this is the first description of such a gene in Lactococcus.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/fisiología , Lactococcus/genética , Polisacáridos Bacterianos/genética , Adsorción , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Toxina del Cólera/genética , Clonación Molecular , Orden Génico , Lactococcus/virología , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Familia de Multigenes/genética , Operón , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...