RESUMEN
In chronic lymphocytic leukemia (CLL), survival of neoplastic cells depends on microenvironmental signals at lymphoid sites where the crosstalk between the integrin VLA-4 (CD49d/CD29), expressed in ~40% of CLL, and the B-cell receptor (BCR) occurs. Here, BCR engagement inside-out activates VLA-4, thus enhancing VLA-4-mediated adhesion of CLL cells, which in turn obtain pro-survival signals from the surrounding microenvironment. We report that the BCR is also able to effectively inside-out activate the VLA-4 integrin in circulating CD49d-expressing CLL cells through an autonomous antigen-independent BCR signaling. As a consequence, circulating CLL cells exhibiting activated VLA-4 express markers of BCR pathway activation (phospho-BTK and phospho-PLC-γ2) along with higher levels of phospho-ERK and phospho-AKT indicating parallel activation of downstream pathways. Moreover, circulating CLL cells expressing activated VLA-4 bind soluble blood-borne VCAM-1 leading to increased VLA-4-dependent actin polymerization/re-organization and ERK phosphorylation. Finally, evidence is provided that ibrutinib treatment, by affecting autonomous BCR signaling, impairs the constitutive VLA-4 activation eventually decreasing soluble VCAM-1 binding and reducing downstream ERK phosphorylation by circulating CLL cells. This study describes a novel anchor-independent mechanism occurring in circulating CLL cells involving the BCR and the VLA-4 integrin, which help to unravel the peculiar biological and clinical features of CD49d+ CLL.
Asunto(s)
Integrina alfa4beta1 , Leucemia Linfocítica Crónica de Células B , Receptores de Antígenos de Linfocitos B , Transducción de Señal , Molécula 1 de Adhesión Celular Vascular , Humanos , Adenina/análogos & derivados , Adenina/farmacología , Adhesión Celular , Integrina alfa4beta1/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Ligandos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Piperidinas/farmacología , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Receptores de Antígenos de Linfocitos B/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismoRESUMEN
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib represents an effective strategy for treatment of chronic lymphocytic leukemia (CLL), nevertheless about 30% of patients eventually undergo disease progression. Here we investigated by flow cytometry the long-term modulation of the CLL CXCR4dim/CD5bright proliferative fraction (PF), its correlation with therapeutic outcome and emergence of ibrutinib resistance. By longitudinal tracking, the PF, initially suppressed by ibrutinib, reappeared upon early disease progression, without association with lymphocyte count or serum beta-2-microglobulin. Somatic mutations of BTK/PLCG2, detected in 57% of progressing cases, were significantly enriched in PF with a 3-fold greater allele frequency than the non-PF fraction, suggesting a BTK/PLCG2-mutated reservoir resident within the proliferative compartments. PF increase was also present in BTK/PLCG2-unmutated cases at progression, indicating that PF evaluation could represent a marker of CLL progression under ibrutinib. Furthermore, we evidence different transcriptomic profiles of PF at progression in cases with or without BTK/PLCG2 mutations, suggestive of a reactivation of B-cell receptor signaling or the emergence of bypass signaling through MYC and/or Toll-Like-Receptor-9. Clinically, longitudinal monitoring of the CXCR4dim/CD5bright PF by flow cytometry may provide a simple tool helping to intercept CLL progression under ibrutinib therapy.
Asunto(s)
Adenina , Agammaglobulinemia Tirosina Quinasa , Resistencia a Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Mutación , Piperidinas , Pirazoles , Pirimidinas , Receptores CXCR4 , Humanos , Adenina/análogos & derivados , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Resistencia a Antineoplásicos/genética , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/genética , Pirimidinas/uso terapéutico , Pirimidinas/farmacología , Pirazoles/uso terapéutico , Pirazoles/farmacología , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proliferación Celular/efectos de los fármacos , Fosfolipasa C gamma/genética , Progresión de la Enfermedad , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Masculino , Anciano , Femenino , Persona de Mediana Edad , Antígenos CD5/metabolismo , Antígenos CD5/genéticaRESUMEN
Here we evaluated the epigenomic and transcriptomic profile of XPO1 mutant chronic lymphocytic leukaemia (CLL) and their clinical phenotype. By ATAC-seq, chromatin regions that were more accessible in XPO1 mutated CLL were enriched of binding sites for transcription factors regulated by pathways emanating from the B-cell receptor (BCR), including NF-κB signalling, p38-JNK and RAS-RAF-MEK-ERK. XPO1 mutant CLL, consistent with the chromatin accessibility changes, were enriched with transcriptomic features associated with BCR and cytokine signalling. By combining epigenomic and transcriptomic data, MIR155HG, the host gene of miR-155, and MYB, the transcription factor that positively regulates MIR155HG, were upregulated by RNA-seq and their promoters were more accessible by ATAC-seq. To evaluate the clinical impact of XPO1 mutations, we investigated a total of 957 early-stage CLL subdivided into 3 independent cohorts (N = 276, N = 286 and N = 395). Next-generation sequencing analysis identified XPO1 mutations as a novel predictor of shorter time to first treatment (TTFT) in all cohorts. Notably, XPO1 mutations maintained their prognostic value independent of the immunoglobulin heavy chain variable status and early-stage prognostic models. These data suggest that XPO1 mutations, conceivably through increased miR-155 levels, may enhance BCR signalling leading to higher proliferation and shorter TTFT in early-stage CLL.
RESUMEN
This phase 1 study evaluated safety, tolerability, and preliminary efficacy of obinutuzumab in combination with venetoclax in patients with previously untreated grade 1-3a follicular lymphoma in need of systemic therapy. Two DLs of venetoclax were evaluated with an expansion cohort at the recommended phase 2 dose. Twenty-five patients were enrolled. The recommended phase 2 dose was venetoclax 800 mg OD continuously for 6 cycles starting on day 2 of cycle 1, with obinutuzumab 1000 mg on days 1, 8, and 15 of cycle 1 and on day 1 of cycles 2 to 6, followed by obinutuzumab maintenance every 2 months for 2 years. Only 1 patient had a DLT consisting of grade 4 thrombocytopenia after the first obinutuzumab infusion. Neutropenia was the most common adverse event of grade ≥3 at least possibly attributed to study treatment. Twenty-four patients were evaluable for response after cycle 6 by computed tomography (CT) and 19 by positron emission tomography/CT (PET/CT): overall and complete response rates were 87.5% (95% CI, 67.6% to 97.3%) and 25% (95% CI, 9.8% to 46.7%) in the CT-evaluated patients and 84.2% (95% CI, 60.4% to 96.6%) and 68.4% (95% CI, 43.4% to 87.4%), respectively, in the PET/CT-evaluated patients. One-year progression-free survival was 77.8% (95% CI, 54.6% to 90.1%) and 79% (95% CI, 47.9% to 92.7%) for CT and PET/CT-evaluable patients, respectively, whereas progression-free survival at 30 months was 73.2% (95% CI, 49.8%, 87.0%) as assessed by CT and 79.0% (95% CI, 47.9%, 92.7%) by PET/CT. Despite the activity observed, our results do not support further development of the combination in this patient population. This trial was registered at www.clinicaltrials.gov as #NCT02877550.
Asunto(s)
Linfoma Folicular , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes , Humanos , Linfoma Folicular/tratamiento farmacológico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Sulfonamidas , Resultado del TratamientoRESUMEN
Splenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological entity. The clinical course is variable, multiple genes are mutated with no unifying mechanism, and essential regulatory pathways and surrounding microenvironments are diverse. We sought to clarify the heterogeneity of SMZL by resolving different subgroups and their underlying genomic abnormalities, pathway signatures, and microenvironment compositions to uncover biomarkers and therapeutic vulnerabilities. We studied 303 SMZL spleen samples collected through the IELSG46 multicenter international study (NCT02945319) by using a multiplatform approach. We carried out genetic and phenotypic analyses, defined self-organized signatures, validated the findings in independent primary tumor metadata and in genetically modified mouse models, and determined correlations with outcome data. We identified 2 prominent genetic clusters in SMZL, termed NNK (58% of cases, harboring NF-κB, NOTCH, and KLF2 modules) and DMT (32% of cases, with DNA-damage response, MAPK, and TLR modules). Genetic aberrations in multiple genes as well as cytogenetic and immunogenetic features distinguished NNK- from DMT-SMZLs. These genetic clusters not only have distinct underpinning biology, as judged by differences in gene-expression signatures, but also different outcomes, with inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling segregated 2 basic types of SMZL immune microenvironments termed immune-suppressive SMZL (50% of cases, associated with inflammatory cells and immune checkpoint activation) and immune-silent SMZL (50% of cases, associated with an immune-excluded phenotype) with distinct mutational and clinical connotations. In summary, we propose a nosology of SMZL that can implement its classification and also aid in the development of rationally targeted treatments.
Asunto(s)
Linfoma de Células B de la Zona Marginal , Neoplasias del Bazo , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Aberraciones Cromosómicas , Inmunofenotipificación , Linfoma de Células B de la Zona Marginal/diagnóstico , Linfoma de Células B de la Zona Marginal/genética , Familia de Multigenes , Mutación , Bazo/patología , Neoplasias del Bazo/diagnóstico , Neoplasias del Bazo/genética , Transcriptoma , Microambiente TumoralRESUMEN
To advance the use of circulating tumor DNA (ctDNA) applications, their broad clinical validity must be tested in different treatment settings, including targeted therapies. Using the prespecified longitudinal systematic collection of plasma samples in the phase 1/2a LYM1002 trial (registered on www.clinicaltrials.gov as NCT02329847), we tested the clinical validity of ctDNA for baseline mutation profiling, residual tumor load quantification, and acquisition of resistance mutations in patients with lymphoma treated with ibrutinib+nivolumab. Inclusion criterion for this ancillary biological study was the availability of blood collected at baseline and cycle 3, day 1. Overall, 172 ctDNA samples from 67 patients were analyzed by the LyV4.0 ctDNA Cancer Personalized Profiling Deep Sequencing Assay. Among baseline variants in ctDNA, only TP53 mutations (detected in 25.4% of patients) were associated with shorter progression-free survival; clones harboring baseline TP53 mutations did not disappear during treatment. Molecular response, defined as a >2-log reduction in ctDNA levels after 2 cycles of therapy (28 days), was achieved in 28.6% of patients with relapsed diffuse large B-cell lymphoma who had ≥1 baseline variant and was associated with best response and improved progression-free survival. Clonal evolution occurred frequently during treatment, and 10.3% new mutations were identified after 2 treatment cycles in nonresponders. PLCG2 was the topmost among genes that acquired new mutations. No patients acquired the C481S BTK mutation implicated in resistance to ibrutinib in CLL. Collectively, our results provide the proof of concept that ctDNA is useful for noninvasive monitoring of lymphoma treated with targeted agents in the clinical trial setting.
Asunto(s)
ADN Tumoral Circulante , Linfoma de Células B Grandes Difuso , Adenina/análogos & derivados , ADN Tumoral Circulante/genética , Humanos , Nivolumab/uso terapéutico , Piperidinas , PirimidinasRESUMEN
We aimed at molecularly dissecting the anatomical heterogeneity of small lymphocytic lymphoma (SLL), by analysing a cohort of 12 patients for whom paired DNA from a lymph node biopsy and circulating cells, as well as plasma-circulating tumour DNA (ctDNA) was available. Notably, the analyses of the lymph node biopsy and of circulating cells complement each other since a fraction of mutations (20·4% and 36·4%, respectively) are unique to each compartment. Plasma ctDNA identified two additional unique mutations. Consistently, the different synchronous sources of tumour DNA complement each other in informing on driver gene mutations in SLL harbouring potential prognostic and/or predictive value.
Asunto(s)
Aberraciones Cromosómicas , ADN de Neoplasias/sangre , Leucemia Linfocítica Crónica de Células B/patología , Ganglios Linfáticos/patología , Adenina/análogos & derivados , Adenina/uso terapéutico , Anciano , Biopsia , Deleción Cromosómica , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 13/ultraestructura , Cromosomas Humanos Par 17/ultraestructura , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/análisis , Femenino , Genes de Inmunoglobulinas , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Inmunoterapia , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Ganglios Linfáticos/química , Masculino , Persona de Mediana Edad , Mutación , Piperidinas/uso terapéuticoRESUMEN
The interaction between the enzyme transglutaminase 2 (TG2) and fibronectin (FN) is involved in the cell-matrix interactions that regulate cell signaling, adhesion, and migration and play central roles in pathologic conditions, particularly fibrosis and cancer. A precise definition of the exact interaction domains on both proteins could provide a tool to design novel molecules with potential therapeutic applications. Although specific residues involved in the interaction within TG2 have been analyzed, little is known regarding the TG2 binding site on FN. This site has been mapped to a large internal 45-kDa protein fragment coincident with the gelatin binding domain (GBD). With the goal of defining the minimal FN interacting domain for TG2, we produced several expression constructs encoding different portions or modules of the GBD and tested their binding and functional properties. The results demonstrate that the I8 module is necessary and sufficient for TG2-binding in vitro, but does not have functional effects on TG2-expressing cells. Modules I7 and I9 increase the strength of the binding and are required for cell adhesion. A 15-kDa fragment encompassing modules I7-9 behaves as the whole 45-kDa GBD and mediates signaling, adhesion, spreading, and migration of TG2+ cells. This study provides new insights into the mechanism for TG2 binding to FN.-Soluri, M. F., Boccafoschi, F., Cotella, D., Moro, L., Forestieri, G., Autiero, I., Cavallo, L., Oliva, R., Griffin, M., Wang, Z., Santoro, C., Sblattero, D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells.
Asunto(s)
Adhesión Celular , Movimiento Celular , Fibronectinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Transglutaminasas/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Fibronectinas/química , Fibronectinas/genética , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transducción de Señal , Transglutaminasas/química , Transglutaminasas/genéticaRESUMEN
The rarity of neoplastic cells in the biopsy imposes major technical hurdles that have so far limited genomic studies in classical Hodgkin lymphoma (cHL). By using a highly sensitive and robust deep next-generation sequencing approach for circulating tumor DNA (ctDNA), we aimed to identify the genetics of cHL in different clinical phases, as well as its modifications on treatment. The analysis was based on specimens collected from 80 newly diagnosed and 32 refractory patients with cHL, including longitudinal samples collected under ABVD (adriamycin, bleomycin, vinblastine, dacarbazine) chemotherapy and longitudinal samples from relapsing patients treated with chemotherapy and immunotherapy. ctDNA mirrored Hodgkin and Reed-Sternberg cell genetics, thus establishing ctDNA as an easily accessible source of tumor DNA for cHL genotyping. By identifying STAT6 as the most frequently mutated gene in â¼40% of cases, we refined the current knowledge of cHL genetics. Longitudinal ctDNA profiling identified treatment-dependent patterns of clonal evolution in patients relapsing after chemotherapy and patients maintained in partial remission under immunotherapy. By measuring ctDNA changes during therapy, we propose ctDNA as a radiation-free tool to track residual disease that may integrate positron emission tomography imaging for the early identification of chemorefractory patients with cHL. Collectively, our results provide the proof of concept that ctDNA may serve as a novel precision medicine biomarker in cHL.