Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833896

RESUMEN

Olive possesses excellent nutritional and economic values for its main healthy products. Among them, a high content of antioxidant compounds, balanced during the ripening process, are produced under genetic and environmental control, resulting in high variability among cultivars. The genes involved in these complex pathways are mainly known, but despite many studies which indicated the key role of light quality and quantity for the synthesis of many metabolites in plants, limited information on these topics is available in olive. We carried out a targeted gene expression profiling in three olive cultivars, Cellina di Nardò, Ruveia, and Salella, which were selected for their contrasting oleic acid and phenolic content. The -omics combined approach revealed a direct correlation between a higher expression of the main flavonoid genes and the high content of these metabolites in 'Cellina di Nardò'. Furthermore, it confirmed the key role of FAD2-2 in the linoleic acid biosynthesis. More interestingly, in all the comparisons, a co-regulation of genes involved in photoperception and circadian clock machinery suggests a key role of light in orchestrating the regulation of these pathways in olive. Therefore, the identified genes in our analyses might represent a useful tool to support olive breeding, although further investigations are needed.


Asunto(s)
Olea , Olea/genética , Olea/metabolismo , Transcriptoma , Fitomejoramiento , Perfilación de la Expresión Génica , Ácido Linoleico/metabolismo
2.
BMC Plant Biol ; 23(1): 452, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749509

RESUMEN

BACKGROUND: Olive is one of the most cultivated species in the Mediterranean Basin and beyond. Despite being extensively studied for its commercial relevance, the origin of cultivated olive and the history of its domestication remain open questions. Here, we present a genealogical and kinship relationships analysis by mean of chloroplast and nuclear markers of different genera, subgenus, species, subspecies, ecotypes, cultivated, ancient and wild types, which constitutes one of the most inclusive research to date on the diversity within Olea europaea species. A complete survey of the variability across the nuclear and plastid genomes of different genotypes was studied through single nucleotide polymorphisms, indels (insertions and deletions), and length variation. RESULTS: Fifty-six different chlorotypes were identified among the Oleaceae family including Olea europaea, other species and genera. The chloroplast genome evolution, within Olea europaea subspecies, probably started from subsp. cuspidata, which likely represents the ancestor of all the other subspecies and therefore of wild types and cultivars. Our study allows us to hypothesize that, inside the subspecies europaea containing cultivars and the wild types, the ancestral selection from var. sylvestris occurred both in the eastern side of the Mediterranean and in the central-western part of Basin. Moreover, it was elucidated the origin of several cultivars, which depends on the introduction of eastern cultivars, belonging to the lineage E1, followed by crossing and replacement of the autochthonous olive germplasm of central-western Mediterranean Basin. In fact, our study highlighted that two main 'founders' gave the origin to more than 60% of analyzed olive cultivars. Other secondary founders, which strongly contributed to give origin to the actual olive cultivar diversity, were already detected. CONCLUSIONS: The application of comparative genomics not only paves the way for a better understanding of the phylogenetic relationships within the Olea europaea species but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance and parentage inside olive cultivars, opening new scenarios for further research such as the association studies and breeding programs.


Asunto(s)
Olea , Oleaceae , Olea/genética , Filogenia , Fitomejoramiento , Cloroplastos/genética
3.
Antioxidants (Basel) ; 11(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36358458

RESUMEN

Plant-derived polyphenols exhibit beneficial effects on physiological and pathological processes, including cancer and neurodegenerative disorders, mainly because of their antioxidant activity. Apples are highly enriched in these compounds, mainly in their peel. The Tuscia Red (TR) apple variety exhibits the peculiar characteristic of depositing high quantities of polyphenols in the pulp, the edible part of the fruit. Since polyphenols, as any natural product, cannot be considered a panacea per se, in this paper, we propose to assess the biological effects of TR flesh extracts, in comparison with two commercial varieties, in a model system, the insect Drosophila melanogaster, largely recognized as a reliable system to test the in vivo effects of natural and synthetic compounds. We performed a comparative, qualitative and quantitative analysis of the polyphenol compositions of the three cultivars and found that TR flesh shows the highest content of polyphenols, and markedly, anthocyanins. Then, we focused on their effects on a panel of physiological, morphometrical, cellular and behavioral phenotypes in wild-type D. melanogaster. We found that all the apple polyphenol extracts showed dose-dependent effects on most of the phenotypes we considered. Remarkably, all the varieties induced a strong relenting of the cell division rate.

4.
Plant Sci ; 319: 111254, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487663

RESUMEN

The ddc mutant of Arabidopsis thaliana is characterized by pleiotropic phenotypic alterations including a curl-shaped leaf, previously explained by disturbed auxin metabolism and transport. The present study was aimed at further explore the molecular bases underlying the abnormal phenotype of the ddc leaf. We demonstrated that genes specifically related to leaf fate commitment and morphogenesis were misexpressed on developing ddc leaves, such as upregulation of CURLY LEAF (CLF) and downregulation of ASYMMETRIC LEAVES2 (AS2), KNOTTED-like gene from A. thaliana (KNAT6), TEOSINTE-LIKE1 CYCLOIDEA and PROLIFERATING CELL FACTOR 2 (TCP2) and others. The CLF gene, encoding a component of Polycomb repressive complex 2 (PRC2) which adds trimethylation marks at Lys27 of histone H3, was overexpressed in the ddc mutant and concomitantly was correlated with DNA methylation-dependent repression of its negative regulator UCL1. KNAT6, encoding a class 1 KNOX homeotic gene, had increased H3K27me3 trimethylation levels, suggesting it is a target gene of the CLF containing PRC2 complex in the ddc mutant. We postulate that different epigenetic mechanisms modulate expression of genes related to auxin pathways as well as gene targets of Polycomb repressive action, during leaf morphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Plants (Basel) ; 11(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35406824

RESUMEN

Plant tissue cultures depend entirely upon artificial light sources for illumination. The illumination should provide light in the appropriate regions of the electromagnetic spectrum for photomorphogenic responses and photosynthetic metabolism. Controlling light quality, irradiances and photoperiod enables the production of plants with desired characteristics. Moreover, significant money savings may be achieved using both more appropriate and less consuming energy lamps. In this review, the attention will be focused on the effects of light characteristics and plant growth regulators on shoot proliferation, the main process in in vitro propagation. The effects of the light spectrum on the balance of endogenous growth regulators will also be presented. For each light spectrum, the effects on proliferation but also on plantlet quality, i.e., shoot length, fresh and dry weight and photosynthesis, have been also analyzed. Even if a huge amount of literature is available on the effects of light on in vitro proliferation, the results are often conflicting. In fact, a lot of exogenous and endogenous factors, but also the lack of a common protocol, make it difficult to choose the most effective light spectrum for each of the large number of species. However, some general issues derived from the analysis of the literature are discussed.

6.
Plants (Basel) ; 10(9)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34579419

RESUMEN

Pathogenesis-related (PR) proteins are part of the systemic signaling network that perceives pathogens and activates defenses in the plant. Eukaryotic and bacterial species have a 24-h 'body clock' known as the circadian rhythm. This rhythm regulates an organism's life, modulating the activity of the phytochromes (phys) and cryptochromes (crys) and the accumulation of the corresponding mRNAs, which results in the synchronization of the internal clock and works as zeitgeber molecules. Salicylic acid accumulation is also under light control and upregulates the PR genes expression, increasing plants' resistance to pathogens. Erwinia amylovora causes fire blight disease in pear trees. In this work, four bacterial transcripts (erw1-4), expressed in asymptomatic E. amylovora-infected pear plantlets, were isolated. The research aimed to understand how the circadian clock, light quality, and related photoreceptors regulate PR and erw genes expression using transgenic pear lines overexpressing PHYB and CRY1 as a model system. Plantlets were exposed to different circadian conditions, and continuous monochromic radiations (Blue, Red, and Far-Red) were provided by light-emitting diodes (LED). Results showed a circadian oscillation of PR10 gene expression, while PR1 was expressed without clear evidence of circadian regulation. Bacterial growth was regulated by monochromatic light: the growth of bacteria exposed to Far-Red did not differ from that detected in darkness; instead, it was mildly stimulated under Red, while it was significantly inhibited under Blue. In this regulatory framework, the active form of phytochrome enhances the expression of PR1 five to 15 fold. An ultradian rhythm was observed fitting the zeitgeber role played by CRY1. These results also highlight a regulating role of photoreceptors on the expression of PRs genes in non-infected and infected plantlets, which influenced the expression of erw genes. Data are discussed concerning the regulatory role of photoreceptors during photoperiod and pathogen attacks.

7.
Genes (Basel) ; 12(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918715

RESUMEN

The olive tree (Olea europaea L.) is a typical Mediterranean crop, important for olive and oil production. The high tendency to bear fruits in an uneven manner, defined as irregular or alternate bearing, results in a significant economic impact for the high losses in olives and oil production. Buds from heavy loaded ('ON') and unloaded ('OFF') branches of a unique olive tree were collected in July and the next March to compare the transcriptomic profiles and get deep insight into the molecular mechanisms regulating floral induction and differentiation. A wide set of DEGs related to ethylene TFs and to hormonal, sugar, and phenylpropanoid pathways was identified in buds collected from 'OFF' branches. These genes could directly and indirectly modulate different pathways, suggesting their key role during the lateral bud transition to flowering stage. Interestingly, several genes related to the flowering process appeared as over-expressed in buds from March 'OFF' branches and they could address the buds towards flower differentiation. By this approach, interesting candidate genes related to the switch from vegetative to reproductive stages were detected and analyzed. The functional analysis of these genes will provide tools for developing breeding programs to obtain olive trees characterized by more constant productivity over the years.


Asunto(s)
Etilenos/farmacología , Flores/crecimiento & desarrollo , Redes Reguladoras de Genes , Olea/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Diferenciación Celular , Flores/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Olea/efectos de los fármacos , Olea/genética , Fitomejoramiento , Proteínas de Plantas/genética , Factores de Transcripción/genética
8.
Plant Sci ; 281: 93-101, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30824066

RESUMEN

The extraordinary incidence of Horizontal Gene Transfer (HGT) mostly in mitochondrial genomes of flowering plants is well known. Here, we report another episode of HGT affecting a large mitochondrial gene region in the evergreen conifer Atlas cedar (Cedrus atlantica). Mitochondria of this Pinaceae species possess an rps3 gene that harbours two introns and shares the same genomic context with a downstream overlapping rpl16 gene, like in the major groups of gymnosperms and angiosperms analyzed so far. Interestingly, C. atlantica contains additional copies of the rps3 and rpl16 sequences that are more closely related to angiosperm counterparts than to those from gymnosperms, as also confirmed by phylogenetic analyses. This suggests that a lateral transfer from a flowering plant donor is the most likely mechanism for the origin of the Atlas cedar extra sequences. Quantitative PCR and reverse-transcription (RT)-PCR analyses demonstrate, respectively, mitochondrial location and lack of expression for the rps3 and rpl16 additional sequences in C. atlantica. Furthermore, our study provides evidence that a similar HGT event takes place in two other Cedrus species, which occurr in Cyprus and North Africa. Only the West Himalayan C. deodara lacks the transferred genes. The potential donor and the molecular mechanism underlying this lateral DNA transfer remain still unclear.


Asunto(s)
Cedrus/genética , Transferencia de Gen Horizontal/genética , Genoma Mitocondrial/genética , Proteínas Ribosómicas/genética
9.
Plant Sci ; 280: 383-396, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30824017

RESUMEN

DNA methylation carried out by different methyltransferase classes is a relevant epigenetic modification of DNA which plays a relevant role in the development of eukaryotic organisms. Accordingly, in Arabidopsis thaliana loss of DNA methylation due to combined mutations in genes encoding for DNA methyltransferases causes several developmental abnormalities. The present study describes novel growth disorders in the drm1 drm2 cmt3 triple mutant of Arabidopsis thaliana, defective both in maintenance and de novo DNA methylation, and highlights the correlation between DNA methylation and the auxin hormone pathway. By using an auxin responsive reporter gene, we discovered that auxin accumulation and distribution were affected in the mutant compared to the wild type, from embryo to adult plant stage. In addition, we demonstrated that the defective methylation status also affected the expression of genes that regulate auxin hormone pathways from synthesis to transport and signalling and a direct relationship between differentially expressed auxin-related genes and altered auxin accumulation and distribution in embryo, leaf and root was observed. Finally, we provided evidence of the direct and organ-specific modulation of auxin-related genes through the DNA methylation process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ADN-Citosina Metilasas/metabolismo , Ácidos Indolacéticos/metabolismo , Metiltransferasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Metilación de ADN , ADN-Citosina Metilasas/genética , Epigénesis Genética , Genes Reporteros , Metiltransferasas/genética , Mutación , Especificidad de Órganos , Fenotipo , Transducción de Señal
10.
Plant Physiol Biochem ; 121: 14-20, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29078092

RESUMEN

Farnesene is a sesquiterpene with semiochemical activity involved in interspecies communication. This molecule, known for its phytotoxic potential and its effects on root morphology and anatomy, caused anisotropic growth, bold roots and a "left-handedness" phenotype. These clues suggested an alteration of auxin distribution, and for this reason, the aim of the present study was to evaluate its effects on: i) PIN-FORMED proteins (PIN) distribution, involved in polar auxin transport; ii) PIN genes expression iii) apical meristem anatomy of primary root, in 7 days old Arabidopsis thaliana seedlings treated with farnesene 250 µM. The following GFP constructs: pSCR::SCR-GFP, pDR5::GFP,pPIN1::PIN1-GFP, pPIN2::PIN2-GFP, pPIN3::PIN3-GFP, pPIN4::PIN4-GFP and pPIN7::PIN7-GFP were used to evaluate auxin distribution. Farnesene caused a reduction in meristematic zone size, an advancement in transition zone, suggesting a premature exit of cells from the meristematic zone, a reduction in cell division and an impairment between epidermal and cortex cells. The auxin-responsive reporter pDR5::GFP highlighted that auxin distribution was impaired in farnesene-treated roots, where auxin distribution appeared maximum in the quiescent center and columella initial cells, without extending to mature columella cells. This finding was further confirmed by the analysis on PIN transport proteins distribution, assessed on individual constructs, which showed an extreme alteration mainly dependent on the PIN 3, 4 and 7, involved in pattern specification during root development and auxin redistribution. Finally, farnesene treatment caused a down-regulation of all the auxin transport genes studied. We propose that farnesene affected auxin transport and distribution causing the alteration of root meristem, and consequently the left-handedness phenotype.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Plantones/metabolismo , Sesquiterpenos/farmacología , Arabidopsis/genética , Meristema/genética , Plantones/genética
11.
Front Plant Sci ; 8: 1323, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28798767

RESUMEN

Cadmium is one of the most widespread pollutant in both terrestrial and marine environment, and its inhibitory effect on plant growth has been largely demonstrated. However, the molecular mechanisms underlying Cd toxicity in plant and mainly in root, as the first organ sensing soil heavy metals, need to be better investigated. To this aim, in the present work we analyzed the growth and the organization of Arabidopsis thaliana primary root in seedlings exposed to Cd (25 and 50 µM) for 8 days starting from germination. Root length, root meristem size, and organization were evaluated together with the behavior of some of the major molecular players in root growth and patterning. In particular, by using different GFP transgenic lines, we monitored: (i) the expression pattern of WOX5 and SCR transcription factors involved in the establishment and maintenance of stem cell niche and in the control of meristem size; (ii) the expression pattern of the IAA-inducible pDR5::GFP reporter, PIN 1, 2, 3, 7 auxin carriers and TCSn::GFP cytokinin-sensitive sensor as relevant components of hormone circuit controlling root growth. We report that Cd exposure inhibits primary root growth via affecting RAM stem cell niche and root radial pattern. At the molecular level, an impairment of auxin maximum accumulation at the root tip, related to a down-regulation and mislocalisation of PIN proteins, and an enhancement of TCSn::GFP cytokinin-sensitive sensor signal is also detected under Cd treatment, thus suggesting an alteration in the homeostasis of auxin/cytokinin signaling. Moreover, and for the first time Cd toxicity on root growth and pattern has been related to a misexpression of SCR transcription factors which is known to interplay with auxin/cytokinin cross-talk in the control of RAM maintenance and activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...