Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Sports Phys Ther ; 18(5): 1206-1217, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795322

RESUMEN

An elastic band wrapped around the distal thighs has recently been proposed as a method for reducing dynamic knee valgus (medial movement of the knee joint in the frontal/coronal plane) while performing squats. The rationale behind this technique is that, by using an external force to pull the knees into further knee valgus, the band both exaggerates the pre-existing movement and provides additional local proprioceptive input, cueing individuals to adjust their knee alignment. If these mechanisms are true, then elastic bands might indeed reduce dynamic knee valgus, which could be promising for use in injury prevention as excessive knee valgus may be associated with a greater risk of sustaining an ACL rupture and/or other knee injuries. Due to this possibility, certain athletic populations have already adopted the use of elastic bands for training and/or rehab, despite a limited number of studies showing beneficial findings. The purpose of this narrative review is to examine current literature that has assessed lower limb muscle activity and/or lower limb kinematics performance on squat-based movements with or without an elastic band(s). Importantly, this paper will also discuss the key limitations that exist in this area, propose suggestions for future research directions, and provide recommendations for training implementations. Level of Evidence: 5.

2.
J Hum Kinet ; 86: 17-29, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37181264

RESUMEN

The aim of this study was to compare the muscle activity of the gluteus medius (GMe), gluteus maximus (GMa), biceps femoris (BF), vastus lateralis (VL), vastus medialis (VM) and erector spinae (ES) as well as medial knee displacement (MKD) while using varying stiffness resistance bands (red: 1.68 kg; black: 3.31 kg; gold: 6.44 kg) during a barbell back squat (BBS) among males and females. A total of 23 (females: 11) resistance trained people were recruited for this study. Muscle activity was measured using electromyography, and motion capture cameras tracked lower-limb kinematics and MKD. Three resistance bands were placed at the distal end of the femur while performing a BBS at their 85% repetition maximum (RM). Parametric and non-parametric statistical analyses were conducted with the alpha level of 0.05. The gold resistance band resulted in a smaller knee-width-index value (i.e., greater MKD) compared to other bands (p < 0.01). Males exhibited less MKD compared to females during the BBS for each resistance band (p = 0.04). Males produced greater VL activity when using the black and gold resistance bands during the BBS (p = 0.03). When using a gold resistance band, the GMe muscle activation was higher compared to other resistance bands (p < 0.01). VM muscle activity was reduced when using a gold resistance band compared to no band condition (p < 0.01). BF (p = 0.39) and ES (p = 0.88) muscle activity did not change when using different resistance bands. As a result, females may be at a biomechanical disadvantage when using resistance bands compared to males while performing the BBS hindering them from optimal performance.

3.
Physiol Rep ; 10(13): e15240, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35778836

RESUMEN

Non-noxious electrical stimulation to distinct locations of the foot sole evokes location-specific cutaneous reflex responses in lower limb muscles. These reflexes occur at latencies that may enable them to be mediated via a transcortical pathway. Corticospinal excitability to the plantarflexors and dorsiflexors was measured in 16 participants using motor evoked potentials (MEPs). Spinal excitability was measured in eight of the original participants using cervicomedullary motor evoked potentials (CMEPs). Measurements were collected with and without preceding cutaneous stimulus to either the heel (HEEL) or metatarsal (MET) locations of the foot sole, and evoked potentials were elicited to coincide with the arrival of the cutaneous volley at either the motor cortex or spinal cord. Plantarflexor MEPs and CMEPs were facilitated with cutaneous stimulation to the HEEL for MEPs (soleus p = 0.04, medial gastrocnemius (MG) p = 0.017) and CMEPs (soleus p = 0.047 and MG p = 0.015), but they were unchanged following MET stimulation for MEPs or CMEPs. Dorsiflexor MEPs were unchanged with cutaneous stimulation at either location, but dorsiflexor CMEPs increased with cutaneous stimulation (p = 0.05). In general, the increase in CMEP amplitudes was larger than the increase in MEP amplitudes, indicating that an increase in spinal excitability likely explains most of the increase in corticospinal excitability. The larger change observed in the CMEP also indicates that excitability from supraspinal sources likely decreased, which could be due to a net change in the excitability of intracortical circuits. This study provides evidence that cutaneous reflexes from foot sole skin are likely influenced by a transcortical pathway.


Asunto(s)
Tractos Piramidales , Estimulación Magnética Transcraneal , Brazo/fisiología , Estimulación Eléctrica , Potenciales Evocados Motores/fisiología , Humanos , Tractos Piramidales/fisiología
4.
J Neurophysiol ; 126(1): 181-194, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34133230

RESUMEN

The use of transcranial magnetic stimulation to assess the excitability of the central nervous system to further understand the neural control of human movement is expansive. The majority of the work performed to-date has assessed corticospinal excitability either at rest or during relatively simple isometric contractions. The results from this work are not easily extrapolated to rhythmic, dynamic motor outputs, given that corticospinal excitability is task-, phase-, intensity-, direction-, and muscle-dependent (Power KE, Lockyer EJ, Forman DA, Button DC. Appl Physiol Nutr Metab 43: 1176-1185, 2018). Assessing corticospinal excitability during rhythmic motor output, however, involves technical challenges that are to be overcome, or at the minimum considered, when attempting to design experiments and interpret the physiological relevance of the results. The purpose of this narrative review is to highlight the research examining corticospinal excitability during a rhythmic motor output and, importantly, to provide recommendations regarding the many factors that must be considered when designing and interpreting findings from studies that involve limb movement. To do so, the majority of work described herein refers to work performed using arm cycling (arm pedaling or arm cranking) as a model of a rhythmic motor output used to examine the neural control of human locomotion.


Asunto(s)
Electromiografía/métodos , Potenciales Evocados Motores/fisiología , Movimiento/fisiología , Músculo Esquelético/fisiología , Periodicidad , Tractos Piramidales/fisiología , Humanos , Contracción Isométrica/fisiología , Estimulación Magnética Transcraneal/métodos
5.
Ergonomics ; 64(12): 1595-1605, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34024262

RESUMEN

The aim of this study was to characterise wrist extensor and flexor muscle activity during combinations of moderate-to-high handgrip and wrist forces that are similar to actions and intensities used in many workplace settings. Surface electromyography was recorded from three wrist flexors and three wrist extensors while participants performed simultaneous handgrip forces and wrist forces ranging in intensities from 15% to 60% of maximum. While the wrist flexors were highly task-dependent, in that their activity significantly changed between conditions, wrist extensor activity was consistently high throughout the experiment. Wrist joint co-contraction was also significantly higher when the wrist extensors were functioning as the antagonists. These findings suggest that the wrist extensors likely demonstrate consistently higher muscleactivity during most tasks of the hand and wrist, which is likely a leading mechanism behind why they develop chronic overuse injuries more frequently than the wrist flexors. Practitioner Summary: This study was conducted to identify forearm muscle activity patterns that might help explain why the wrist extensors develop overuse injuries more frequently than the flexors. Results demonstrated that the wrist extensors are consistently, highly active during combined handgrip and wrist forces and exhibit no periods of low muscle activity.Abbreviations: BB: biceps brachii; ECR: extensor carpi radialis; ECU: extensor carpi ulnaris; ED: extensor digitorum; EMG: electromyography; ES: effect size; FCR: flexor carpi radialis; FCU: flexor carpi ulnaris; FDS: flexor digitorum superficialis; MVC: maximal voluntary contraction; MVE: maximal voluntary excitation; SD: standard deviation; SE: standard error; TB: triceps brachii.


Asunto(s)
Fuerza de la Mano , Muñeca , Electromiografía , Antebrazo , Humanos , Músculo Esquelético , Articulación de la Muñeca
6.
Sports Biomech ; 20(2): 198-212, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30526370

RESUMEN

This study examined the influence of the TherabandTM CLX gold band on lower-limb muscle activity and kinematics during an overhead barbell squat. Participants performed two sets (band and no-band) of 12 repetitions of overhead barbell squats at 25% bodyweight. Three-dimensional kinematics were measured using motion capture with rigid bodies placed bilaterally on the foot, shank, thigh and thorax. Electromyography was collected from seven, bilateral muscles of the lower-limb and was unchanged for all muscles between conditions. Medial knee collapse was calculated using a knee-width index (KWI) ratio of the distance between the lateral epicondyles of the femur and the lateral malleoli. Average KWI was smaller during the band condition for the concentric (No band: 0.99 ± 0.05, Band: 0.97 ± 0.06, p < 0.05) and eccentric phases (No band: 1.00 ± 0.06, Band: 0.97 ± 0.05, p < 0.05). KWI was significantly smaller with the use of the TherabandTM CLX. As the gold band is the strongest of the CLX offerings, any benefit of increased proprioception may have been lost due to the high resistance of the band. Further research examining the dose-response of elastic band resistance to knee alignment may be needed to inform proper exercise prescription.


Asunto(s)
Rodilla/fisiología , Extremidad Inferior/fisiología , Músculo Esquelético/fisiología , Equipo Deportivo , Levantamiento de Peso/fisiología , Adulto , Fenómenos Biomecánicos , Electromiografía , Humanos , Masculino , Movimiento/fisiología , Postura , Propiocepción/fisiología , Rango del Movimiento Articular , Estudios de Tiempo y Movimiento , Adulto Joven
7.
Artículo en Inglés | MEDLINE | ID: mdl-33345044

RESUMEN

Due to their stabilizing role, the wrist extensor muscles demonstrate an earlier onset of performance fatigability and may impair movement accuracy more than the wrist flexors. However, minimal fatigue research has been conducted at the wrist. Thus, the purpose of this study was to examine how sustained isometric contractions of the wrist extensors/flexors influence hand-tracking accuracy. While gripping the handle of a three-degrees-of-freedom wrist manipulandum, 12 male participants tracked a 2:3 Lissajous curve (±32° wrist flexion/extension; ±18° radial/ulnar deviation). A blue, circular target moved about the trajectory and participants tracked the target with a yellow circle (corresponding to the handle's position). Five baseline tracking trials were performed prior to the fatiguing task. Participants then exerted either maximal wrist extension or flexion force (performed on separate days) against a force transducer until they were unable to maintain 25% of their pre-fatigue maximal voluntary contraction (MVC). Participants then performed 7 tracking trials from immediately post-fatigue to 10 min after. Performance fatigability was assessed using various metrics to account for errors in position-tracking, error tendencies, and movement smoothness. While there were no differences in tracking error between flexion/extension sessions, tracking error significantly increased immediately post-fatigue (Baseline: 1.40 ± 0.54°, Post-fatigue: 2.02 ± 0.51°, P < 0.05). However, error rapidly recovered, with no differences in error from baseline after 1-min post-fatigue. These findings demonstrate that sustained isometric extension/flexion contractions similarly impair tracking accuracy of the hand. This work serves as an important step to future research into workplace health and preventing injuries of the distal upper-limb.

8.
Front Sports Act Living ; 2: 574650, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33345137

RESUMEN

We evaluated the effects of muscle fatigue on hand-tracking performance in young adults. Differences were quantified between wrist flexion and extension fatigability, and between males and females. Participants were evaluated on their ability to trace a pattern using a 3-degrees-of-freedom robotic manipulandum before (baseline) and after (0, 1, 2, 4, 6, 8, and 10 mins) a submaximal-intensity fatigue protocol performed to exhaustion that isolated the wrist flexors or extensors on separate days. Tracking tasks were performed at all time points, while maximal voluntary contractions (MVCs) were performed at baseline, and 2, 6-, and 10-mins post-task termination. We evaluated movement smoothness (jerk ratio, JR), shape reproduction (figural error, FE), and target tracking accuracy (tracking error, TE). MVC force was significantly lower in females (p < 0.05), lower than baseline for all timepoints after task termination (p < 0.05), with no muscle group-dependent differences. JR did not return to baseline until 10-mins post-task termination (most affected), while FE returned at 4-mins post-task termination, and TE at 1-min post-task termination. Males tracked the target with significantly lower JR (p < 0.05), less TE (p < 0.05), and less FE (p < 0.05) than females. No muscle group-dependent changes in hand-tracking performance were observed. Based on this work, hand tracking accuracy is similarly impaired following repetitive submaximal dynamic wrist flexion or extension. The differences between male and female fatigability was independent of the changes in our tracking metrics.

9.
PeerJ ; 8: e9759, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983635

RESUMEN

Arm cycling is commonly used in rehabilitation settings for individuals with motor impairments in an attempt to facilitate neural plasticity, potentially leading to enhanced motor function in the affected limb(s). Studies examining the neural control of arm cycling, however, typically cycle using a set cadence and power output. Given the importance of motor output intensity, typically represented by the amplitude of electromyographic (EMG) activity, on neural excitability, surprisingly little is known about how arm muscle activity is modulated using relative workloads. Thus, the objective of this study was to characterize arm muscle activity during arm cycling at different relative workloads. Participants (n = 11) first completed a 10-second maximal arm ergometry sprint to determine peak power output (PPO) followed by 11 randomized trials of 20-second arm cycling bouts ranging from 5-50% of PPO (5% increments) and a standard 25 W workload. All submaximal trials were completed at 60 rpm. Integrated EMG amplitude (iEMG) was assessed from the biceps brachii, brachioradialis, triceps brachii, flexor carpi radialis, extensor carpi radialis and anterior deltoid of the dominant arm. Arm cycling was separated into two phases, flexion and extension, relative to the elbow joint for all comparisons. As expected, iEMG amplitude increased during both phases of cycling for all muscles examined. With the exception of the triceps brachii and extensor carpi radialis, iEMG amplitudes differed between the flexion and extension phases. Finally, there was a linear relationship between iEMG amplitude and the %PPO for all muscles during both elbow flexion and extension.

10.
Brain Sci ; 10(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668568

RESUMEN

The wrist extensors demonstrate an earlier fatigue onset than the wrist flexors. However, it is currently unclear whether fatigue induces unique changes in muscle activity or corticospinal excitability between these muscle groups. The purpose of this study was to examine how sustained isometric wrist extension/flexion maximal voluntary contractions (MVCs) influence muscle activity and corticospinal excitability of the forearm. Corticospinal excitability to three wrist flexors and three wrist extensors were measured using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation. Responses were elicited while participants exerted 10% of their maximal handgrip force, before and after a sustained wrist flexion or extension MVC (performed on separate sessions). Post-fatigue measures were collected up to 10-min post-fatigue. Immediately post-fatigue, extensor muscle activity was significantly greater following the wrist flexion fatigue session, although corticospinal excitability (normalized to muscle activity) was greater on the wrist extension day. Responses were largely unchanged in the wrist flexors. However, for the flexor carpi ulnaris, normalized MEP amplitudes were significantly larger following wrist extension fatigue. These findings demonstrate that sustained isometric flexion/extension MVCs result in a complex reorganization of forearm muscle recruitment strategies during hand-gripping. Based on these findings, previously observed corticospinal behaviour following fatigue may not apply when the fatiguing task and measurement task are different.

11.
J Biomech ; 108: 109897, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32636008

RESUMEN

Functioning as wrist stabilizers, the wrist extensor muscles exhibit higher levels of muscle activity than the flexors in most distal upper-limb tasks. However, this finding has been derived mostly from isometric or wrist flexion-extension protocols, with little consideration for wrist dynamics or radial-ulnar wrist deviations. The purpose of this study was to assess forearm muscle activity during the execution of dynamic wrist radial-ulnar deviation in various forearm orientations (pronation/supination). In 12 healthy university-aged males, surface electromyography (EMG) was recorded from eight muscles of the dominant arm: flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU), extensor digitorum (ED), biceps brachii (BB) and triceps brachii (TB). While grasping a handle, participants performed dynamic radial-ulnar deviation using a three-degrees-of-freedom wrist manipulandum. The robotic device applied torque to the handle, in either a radial or ulnar direction, and in one of three forearm postures (30° supinated/neutral/30° pronated). Results indicated that forearm posture influenced the muscles acting upon the hand (FDS/ED), whereas movement phase (concentric-eccentric) and torque direction influenced nearly every muscle. The ECR demonstrated the greatest task-dependency of all forearm muscles, which is possibly reflective of forearm muscle lines of action. Co-contraction ratios were much higher in radial trials than ulnar (Radial: 1.20 ± 0.78, Ulnar: 0.28 ± 0.18, P < 0.05), suggesting greater FCU and ECU contribution to wrist joint stability in radial-ulnar movement. These findings highlight a greater complexity of wrist extensor function than has previously been reported in isometric work.


Asunto(s)
Robótica , Muñeca , Anciano , Animales , Antebrazo , Humanos , Masculino , Músculo Esquelético , Universidades , Articulación de la Muñeca
12.
J Biomech ; 108: 109908, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32636014

RESUMEN

Current research suggests that the wrist extensor muscles function as the primary stabilizers of the wrist-joint complex. However, most investigations have utilized isometric study designs, with little consideration for wrist dynamics or changes in posture. The purpose of the present study was to assess forearm muscle activity during the execution of dynamic wrist flexion/extension in multiple forearm orientations (pronation/supination). In 12 young adult males, surface electromyography (EMG) was recorded from eight muscles of the dominant arm: flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU), extensor digitorum (ED), biceps brachii (BB) and triceps brachii (TB). While grasping a handle, participants performed dynamic wrist flexion/extension using a three-degrees-of-freedom wrist manipulandum. The robotic device applied torque to the handle, in either a flexion or extension direction, and in one of three forearm postures (30° supinated/neutral/30° pronated). Results indicated that forearm posture had minimal influence on forearm muscle activity, but significantly altered the activity of the biceps and triceps brachii. Movement phase (concentric-eccentric) dictated muscle activity in every muscle. Interestingly, muscle activity in the eccentric phase was equal between the two applied handle torques, regardless of whether the muscle acted as the agonist or antagonist. Co-contraction ratios were higher in the flexion conditions (flexion: 2.28 ± 2.04, extension: 0.32 ± 0.27), suggesting significantly greater wrist extensor activity-likely a contribution to wrist joint stability. This highlights the vulnerability of the wrist extensor muscles to overuse injuries in settings requiring prolonged use of dynamic wrist exertions.


Asunto(s)
Robótica , Muñeca , Electromiografía , Antebrazo , Humanos , Masculino , Músculo Esquelético , Rango del Movimiento Articular , Articulación de la Muñeca , Adulto Joven
13.
Sci Rep ; 10(1): 4161, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139793

RESUMEN

Sudden disturbances (perturbations) to the hand and wrist are commonplace in daily activities and workplaces when interacting with tools and the environment. It is important to understand how perturbations influence forearm musculature and task performance when identifying injury mechanisms. The purpose of this work was to evaluate changes in forearm muscle activity and co-contraction caused by wrist perturbations during a dynamic wrist tracking task. Surface electromyography was recorded from eight muscles of the upper-limb. Participants performed trials consisting of 17 repetitions of ±40° of wrist flexion/extension using a robotic device. During trials, participants received radial or ulnar perturbations that were delivered during flexion or extension, and with known or unknown timing. Co-contraction ratios for all muscle pairs showed significantly greater extensor activity across all experimental conditions. Of all antagonistic muscle pairs, the flexor carpi radialis (FCR)-extensor carpi radialis (ECR) muscle pair had the greatest change in co-contraction, producing 1602% greater co-contraction during flexion trials than during extensions trials. Expected perturbations produced greater anticipatory (immediately prior to the perturbation) muscle activity than unexpected, resulting in a 30% decrease in wrist displacement. While improving performance, this increase in anticipatory muscle activity may leave muscles susceptible to early-onset fatigue, which could lead to chronic overuse injuries in the workplace.


Asunto(s)
Músculo Esquelético/fisiología , Rango del Movimiento Articular/fisiología , Articulación de la Muñeca/fisiología , Adulto , Fenómenos Biomecánicos , Electromiografía , Mano/fisiología , Humanos , Masculino , Contracción Muscular/fisiología , Muñeca/fisiología , Adulto Joven
14.
J Neurophysiol ; 122(1): 413-423, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31116661

RESUMEN

Forearm rotation (supination/pronation) alters corticospinal excitability to the biceps brachii, but it is unclear whether corticospinal excitability is influenced by joint angle, muscle length, or both. Thus the purpose of this study was to separately examine elbow joint angle and muscle length on corticospinal excitability. Corticospinal excitability to the biceps and triceps brachii was measured using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation. Spinal excitability was measured using cervicomedullary motor evoked potentials (CMEPs) elicited via transmastoid electrical stimulation. Elbow angles were manipulated with a fixed biceps brachii muscle length (and vice versa) across five unique postures: 1) forearm neutral, elbow flexion 90°; 2) forearm supinated, elbow flexion 90°; 3) forearm pronated, elbow flexion 90°; 4) forearm supinated, elbow flexion 78°; and 5) forearm pronated, elbow flexion 113°. A musculoskeletal model determined biceps brachii muscle length for postures 1-3, and elbow joint angles (postures 4-5) were selected to maintain biceps length across forearm orientations. MEPs and CMEPs were elicited at rest and during an isometric contraction of 10% of maximal biceps muscle activity. At rest, MEP amplitudes to the biceps were largest during supination, which was independent of elbow joint angle. CMEP amplitudes were not different when the elbow was fixed at 90° but were largest in pronation when muscle length was controlled. During an isometric contraction, there were no significant differences across forearm postures for either MEP or CMEP amplitudes. These results highlight that elbow joint angle and biceps brachii muscle length can each independently influence spinal excitability. NEW & NOTEWORTHY Changes in upper limb posture can influence the responsiveness of the central nervous system to artificial stimulations. We established a novel approach integrating neurophysiology techniques with biomechanical modeling. Through this approach, the effects of elbow joint angle and biceps brachii muscle length on corticospinal and spinal excitability were assessed. We demonstrate that spinal excitability is uniquely influenced by joint angle and muscle length, and this highlights the importance of accounting for muscle length in neurophysiological studies.


Asunto(s)
Potenciales Evocados Motores , Antebrazo/fisiología , Articulaciones/fisiología , Músculo Esquelético/fisiología , Postura , Tractos Piramidales/fisiología , Adulto , Fenómenos Biomecánicos , Humanos , Contracción Isométrica , Masculino , Músculo Esquelético/anatomía & histología
15.
J Electromyogr Kinesiol ; 45: 53-60, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30822679

RESUMEN

The purpose of this study was to examine forearm muscle activity during simultaneous execution of dual motor tasks; hand-gripping and wrist forces. Surface electromyography was recorded from eight muscles of the upper-limb: flexor carpi radialis, flexor carpi ulnaris, flexor digitorum superficialis, extensor carpi radialis, extensor carpi ulnaris, extensor digitorum, biceps brachii and triceps brachii. Participants were seated with their forearm supported in a neutral position with an adjustable force transducer placed on either the palmar or dorsal side of the hand (for palmar/dorsal forces). Participants performed trials of simultaneous handgrip and wrist forces of various magnitudes, ranging in intensity from 0 to 40% of their maximal voluntary contraction. Trials lasted 5 s and force and electromyography data were assessed. The wrist flexors provided greatest contributions to tasks dominated by palmar forces but exhibited very low muscle activity in dorsal dominant tasks. Wrist extensors were active at moderate-to-high levels across nearly all conditions and demonstrated greater activity than the wrist flexors during handgrip-dominant tasks. These findings suggest that the wrist extensors provide the greatest contribution to wrist stiffness in complex motor tasks, and highlight the importance of investigating forearm muscle recruitment strategies under dual task parameters.


Asunto(s)
Antebrazo/fisiología , Fuerza de la Mano , Músculo Esquelético/fisiología , Muñeca/fisiología , Adulto , Femenino , Humanos , Masculino , Articulación de la Muñeca/fisiología
16.
Neurosci Lett ; 692: 100-106, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30399398

RESUMEN

The purpose of the present study was to examine corticospinal excitability to the biceps and triceps brachii during arm cycling and an intensity-matched tonic contraction using stimulus response curves (SRCs) elicited via transcranial magnetic stimulation (TMS). Corticospinal excitability was assessed using TMS elicited motor-evoked potentials (MEPs) at eight different stimulation intensities (85-190% of MEP threshold). MEPs were recorded during arm cycling at two different positions, mid-elbow flexion (6 o'clock relative to a clock face) and mid-elbow extension (12 o'clock relative to a clock face), in addition to an intensity-matched (12 o'clock) tonic contraction. At the 12 o'clock position, the slope of the SRC was significantly lower during arm cycling than the tonic contraction for the biceps brachii (Cycling: 0.64 ± 0.47, Tonic: 1.02 ± 0.38, P < 0.05) but was not different for the triceps brachii (Cycling: 1.33 ± 0.49, Tonic: 1.48 ± 0.43, P = 0.42). Within arm cycling, the SRC slope was significantly greater at the 6 o'clock position than 12 o'clock position for the biceps brachii (6 o'clock: 1.37 ± 0.24, 12 o'clock: 0.64 ± 0.47, P < 0.05) but was not different for the triceps brachii (6 o'clock: 1.11 ± 0.28, 12 o'clock: 1.33 ± 0.49, P = 0.34). These findings demonstrate that corticospinal excitability to the biceps brachii is task-dependent during the extension phase of arm cycling. Neither position nor task influenced corticospinal excitability to the triceps brachii, providing further support that the motor control of locomotor outputs is muscle-specific.


Asunto(s)
Brazo/fisiología , Actividad Motora , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Adulto , Codo/fisiología , Potenciales Evocados Motores , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/inervación , Estimulación Magnética Transcraneal , Adulto Joven
17.
Appl Physiol Nutr Metab ; 43(11): 1176-1185, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29522692

RESUMEN

In quadrupeds, special circuity located within the spinal cord, referred to as central pattern generators (CPGs), is capable of producing complex patterns of activity such as locomotion in the absence of descending input. During these motor outputs, the electrical properties of spinal motoneurones are modulated such that the motoneurone is more easily activated. Indirect evidence suggests that like quadrupeds, humans also have spinally located CPGs capable of producing locomotor outputs, albeit descending input is considered to be of greater importance. Whether motoneurone properties are reconfigured in a similar manner to those of quadrupeds is unclear. The purpose of this review is to summarize our current state of knowledge regarding the modulation of motoneurone excitability during CPG-mediated motor outputs using animal models. This will be followed by more recent work initially aimed at understanding changes in motoneurone excitability during CPG-mediated motor outputs in humans, which quickly expanded to also include supraspinal excitability.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Locomoción/fisiología , Neuronas Motoras/fisiología , Animales , Humanos , Músculo Esquelético/fisiología , Médula Espinal/fisiología
18.
Front Hum Neurosci ; 10: 543, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826236

RESUMEN

The purpose of this study was to examine the influence of neutral and pronated handgrip positions on corticospinal excitability to the biceps brachii during arm cycling. Corticospinal and spinal excitability were assessed using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) and cervicomedullary-evoked potentials (CMEPs) elicited via transmastoid electrical stimulation (TMES), respectively. Participants were seated upright in front on arm cycle ergometer. Responses were recorded from the biceps brachii at two different crank positions (6 and 12 o'clock positions relative to a clock face) while arm cycling with neutral and pronated handgrip positions. Responses were also elicited during tonic elbow flexion to compare/contrast the results to a non-rhythmic motor output. MEP and CMEP amplitudes were significantly larger at the 6 o'clock position while arm cycling with a neutral handgrip position compared to pronated (45.6 and 29.9%, respectively). There were no differences in MEP and CMEP amplitudes at the 12 o'clock position for either handgrip position. For the tonic contractions, MEPs were significantly larger with a neutral vs. pronated handgrip position (32.6% greater) while there were no difference in CMEPs. Corticospinal excitability was higher with a neutral handgrip position for both arm cycling and tonic elbow flexion. While spinal excitability was also higher with a neutral handgrip position during arm cycling, no difference was observed during tonic elbow flexion. These findings suggest that not only is corticospinal excitability to the biceps brachii modulated at both the supraspinal and spinal level, but that it is influenced differently between rhythmic arm cycling and tonic elbow flexion.

19.
Exp Brain Res ; 234(8): 2339-49, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27038204

RESUMEN

This is the first study to examine changes in corticospinal excitability to the biceps brachii during the onset of arm cycling from a resting position to a point when steady-state arm cycling was obtained. Supraspinal and spinal excitability were assessed using motor-evoked potentials (MEPs) elicited via transcranial magnetic stimulation and cervicomedullary evoked potentials (CMEPs) elicited via transmastoid electrical stimulation, respectively. Evoked responses were recorded from the biceps brachii during elbow flexion (6 o'clock relative to a clock face) for both arm cycling and an intensity-matched tonic contraction at three separate periods: (1) immediately at the onset of motor output and after completion of the (2) 4th revolution and (3) 9th revolution. There was no difference during initiation between tasks for MEP (P = 0.79) or CMEP amplitudes (P = 0.57). However, MEP amplitudes were significantly larger during arm cycling than an intensity-matched tonic contraction after the completion of the 4th (Cycling 76.48 ± 17.35 % of M max, Tonic 63.45 ± 18.45 % of M max, P < 0.05) and 9th revolutions (Cycling 72.37 ± 15.96 % of M max, Tonic 58.1 ± 24.23 % of M max, P < 0.05). There were no differences between conditions in CMEP amplitudes at the 4th (Cycling 49.6 ± 25.4 % of M max, Tonic 41.6 ± 11.2 % of M max, P = 0.31) or the 9th revolution (Cycling 47.2 ± 17.0 % of M max, Tonic 40.8 ± 13.6 % of M max, P = 0.29). These results demonstrate that corticospinal excitability is not different between arm cycling and a tonic contraction at motor output onset, but supraspinal excitability is enhanced during steady-state arm cycling. This suggests a similarity in the way the corticospinal tract initiates motor outputs in humans, regardless of the differences that present themselves in the later, steady-state stages.


Asunto(s)
Brazo/fisiología , Potenciales Evocados Motores/fisiología , Actividad Motora/fisiología , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Adulto , Estimulación Eléctrica , Electromiografía , Humanos , Masculino , Apófisis Mastoides , Contracción Muscular/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
20.
J Electromyogr Kinesiol ; 27: 95-101, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26946146

RESUMEN

Variations in handgrip force influences shoulder muscle activity, and this effect is dependent upon upper limb position. Previous work suggests that neural coupling between proximal and distal muscles with changes in joint position is a possible mechanism but these studies tend to use artificially constrained postures that do not reflect activities of daily living. The purpose of this study was to examine the effects of upper limb posture on corticospinal excitability to the forearm muscles during workplace relevant arm positions. Motor evoked potentials (MEPs) were elicited in four forearm muscles via transcranial magnetic stimulation at six arm positions (45°, 90° and 120° of humeral elevation in both the flexion and abduction planes). MEPs were delivered as stimulus-response curves (SRCs) at rest and at constant intensity during two gripping tasks. Boltzmann plateau levels were smaller for the flexor carpi radialis in flexion at 45° versus 90° (p=0.0008). Extensor carpi radialis had a greater plateau during flexion than abduction (p=0.0042). Corticospinal excitability to the forearm muscles were influenced by upper limb posture during both the resting and gripping conditions. This provides further evidence that upper limb movements are controlled as a whole rather than segmentally and is relevant for workplace design considerations.


Asunto(s)
Antebrazo/fisiología , Fuerza de la Mano/fisiología , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Adulto , Electromiografía/métodos , Potenciales Evocados Motores/fisiología , Femenino , Antebrazo/inervación , Humanos , Masculino , Movimiento/fisiología , Músculo Esquelético/inervación , Postura/fisiología , Rango del Movimiento Articular/fisiología , Descanso/fisiología , Estimulación Magnética Transcraneal/métodos , Extremidad Superior/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA