RESUMEN
Background: Childhood apraxia of speech (CAS) is a genetically heterogeneous pediatric motor speech disorder. The advent of whole exome sequencing (WES) and whole genome sequencing techniques has led to increased identification of pathogenic variants in CAS genes. In an as yet uncharacterized Italian cohort, we aimed both to identify new pathogenic gene variants associated with CAS, and to confirm the disease-related role of genes already reported by others. We also set out to refine the clinical and neurodevelopmental characterization of affected children, with the aim of identifying specific, gene-related phenotypes. Methods: In a single-center study aiming to explore the genetic etiology of CAS in a cohort of 69 Italian children, WES was performed in the families of the 34 children found to have no copy number variants. Each of these families had only one child affected by CAS. Results: High-confidence (HC) gene variants were identified in 7/34 probands, in two of whom they affected KAT6A and CREBBP, thus confirming the involvement of these genes in speech impairment. The other probands carried variants in low-confidence (LC) genes, and 20 of these variants occurred in genes not previously reported as associated with CAS. UBA6, ZFHX4, and KAT6A genes were found to be more enriched in the CAS cohort compared to control individuals. Our results also showed that most HC genes are involved in epigenetic mechanisms and are expressed in brain regions linked to language acquisition processes. Conclusion: Our findings confirm a relatively high diagnostic yield in Italian patients.
RESUMEN
Relevance of germline (GL) predisposition in myelodysplastic syndromes (MDSs) was stressed in both 2022 WHO and International Consensus classifications, but its incidence is probably underestimated, especially in young adult patients. We selected a cohort of 31 consecutive de novo MDS patients with unusual young age (<60 years). We performed exome sequencing (ES) on DNA extracted from noninvasive sources (peripheral blood and saliva), filtering for a panel of 344 genes specifically tailored for detecting GL variants related to clonal and nonclonal cytopenia. We observed at least one high- or low-confidence GL MDS variant in 7/31 (22.6%) and 9/31 (29.0%) of cases, respectively. Four of 31 patients (12.9%) confirmed having established MDS/AML predisposing disorders. We found heterozygous variants in genes involved in DNA repair/cancer predisposition (ATM, ATR, FANCM, PARN, BRCA1, BRCA2, CHEK2, MSH2) in 9/31 (29.0%) cases and variants affecting ribosome biogenesis (SBDS), hematopoietic stem cell (GATA2), and megakaryocyte (ANKRD26) differentiation in single cases. Two cases had variants in RBBP6, a gene previously described exclusively in familial myeloproliferative neoplasms. Lastly, four cases had variants in genes related to inherited anemias (CUBN and PIEZO1 genes). Our results showed that "young" MDS patients aged 40-60 years carried reported and unreported GL variants with an unexpectedly high proportion, and these events co-occurred with somatic mutations recurrent in myeloid neoplasms. We explored the "no man's land" of the young adult MDS cases adopting a practical and scalable diagnostic tool, capable to detect GL variants avoiding invasive methods.
RESUMEN
Dilated cardiomyopathy (DCM) is defined as left ventricular enlargement accompanied by systolic dysfunction not explained by abnormal loading conditions or coronary heart disease. The DCM clinical spectrum is broad, ranging from subclinical to severe presentation with progression to end stage heart failure. To date, different genetic loci have been found to have moderate/definitive evidence for causality in DCM and pathogenic variants in the TTN gene represent the main genetic determinant. Here, we describe a family in which the co-occurrence of two genetic hits, one in the TTN and one in the BAG3 gene, was associated with heterogeneous clinical presentation ranging from subclinical phenotypes to acute cardiogenic shock mimicking fulminant myocarditis. We hypothesize that at least some specific BAG3 genotypes could be related to DCM presenting with acute heart failure and suggest that patients and relatives carrying BAG3 pathogenic variants should be addressed to a tertiary-level heart care center.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Cardiomiopatía Dilatada , Conectina , Predisposición Genética a la Enfermedad , Insuficiencia Cardíaca , Fenotipo , Humanos , Cardiomiopatía Dilatada/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/diagnóstico , Masculino , Conectina/genética , Femenino , Linaje , Persona de Mediana Edad , Enfermedad Aguda , Adulto , MutaciónRESUMEN
Childhood apraxia of speech (CAS) is a pediatric motor speech disorder. The genetic etiology of this complex neurological condition is not yet well understood, although some genes have been linked to it. We describe the case of a boy with a severe and persistent motor speech disorder, consistent with CAS, and a coexisting language impairment.Whole exome sequencing in our case revealed a de novo and splicing mutation in the CSMD1 gene.
Asunto(s)
Apraxias , Habla , Masculino , Niño , Humanos , Apraxias/genética , Trastornos del Habla/genética , Mutación/genética , Secuenciación del Exoma , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Pleiotropic genetic factors (e.g., DNA polymorphisms) may be involved in the initiation of neuroblastoma (NB) and coronary artery disease (CAD) given their common origin from defects in neural crest development. To discover novel NB susceptibility genes, we conducted a three-stage survey including a meta-analysis of NB and CAD genome-wide association data, prioritization of NB causal variants, and validation in an independent cohort of affected individuals-control subjects. The lead SNP, rs13337397 at the 16q23.1 locus, associated with both diseases in the meta-analysis and with NB in the validation study. All the SNPs in linkage disequilibrium with rs13337397 were annotated using the H3K27ac epigenetic marker of neural crest cells (NCC) and NB cell lines. Indeed, we identified the functional SNP rs13337017, mapping within an enhancer of NCCs and NB cell lines and showing long-range interactions with CFDP1 by Hi-C analysis. Luciferase assays indicated that the risk allele of rs13337017 increased CFDP1 expression in NB cell lines. Of note, CFDP1 high expression associated with unfavorable prognostic markers in an analysis including 498 NB transcriptomes. Moreover, depletion of CFDP1 markedly decreased viability and migration and increased apoptotic rates in NB cell lines. Finally, transcriptome and qPCR analyses revealed that the depletion of CFDP1 may affect noradrenergic neuron differentiation by downregulating master regulators of sympathetic noradrenergic identity, including PHOX2B, HAND2, and GATA3. Our data strongly suggest that CFDP1 acts as oncogene in NB. In addition, we provide evidence that genetic predisposition to NB can be mediated by the alteration of noradrenergic lineage-specific gene expression.
Asunto(s)
Enfermedad de la Arteria Coronaria , Neuroblastoma , Humanos , Factores de Transcripción/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad/genética , Secuencias Reguladoras de Ácidos Nucleicos , Neuroblastoma/genéticaRESUMEN
Introduction: Folliculin, encoded by FLCN gene, plays a role in the mTORC1 autophagy cascade and its alterations are responsible for the Birt-Hogg-Dubé (BHD) syndrome, characterized by follicle hamartomas, kidney tumors and pneumothorax. Patient and results: We report a 74-years-old woman diagnosed with dementia and carrying a FLCN alteration in absence of any sign of BHD. She also carried an alteration of MAT1A gene, which is also implicated in the regulation of mTORC1. Discussion: The MAT1A variant could have prevented the development of a FLCN-related oncological phenotype. Conversely, our patient presented with dementia that, to date, has yet to be documented in BHD. Folliculin belongs to the DENN family proteins, which includes C9orf72 whose alteration has been associated to neurodegeneration. The folliculin perturbation could affect the C9orf72 activity and our patient could represent the first human model of a relationship between FLCN and C9orf72 across the path of autophagy.
RESUMEN
The 10q24.33 locus is known to be associated with susceptibility to cutaneous malignant melanoma (CMM), but the mechanisms underlying this association have been not extensively investigated. We carried out an integrative genomic analysis of 10q24.33 using epigenomic annotations and in vitro reporter gene assays to identify regulatory variants. We found two putative functional single nucleotide polymorphisms (SNPs) in an enhancer and in the promoter of OBFC1, respectively, in neural crest and CMM cells, one, rs2995264, altering enhancer activity. The minor allele G of rs2995264 correlated with lower OBFC1 expression in 470 CMM tumors and was confirmed to increase the CMM risk in a cohort of 484 CMM cases and 1801 controls of Italian origin. Hi-C and chromosome conformation capture (3C) experiments showed the interaction between the enhancer-SNP region and the promoter of OBFC1 and an isogenic model characterized by CRISPR-Cas9 deletion of the enhancer-SNP region confirmed the potential regulatory effect of rs2995264 on OBFC1 transcription. Moreover, the presence of G-rs2995264 risk allele reduced the binding affinity of the transcription factor MEOX2. Biologic investigations showed significant cell viability upon depletion of OBFC1, specifically in CMM cells that were homozygous for the protective allele. Clinically, high levels of OBFC1 expression associated with histologically favorable CMM tumors. Finally, preliminary results suggested the potential effect of decreased OBFC1 expression on telomerase activity in tumorigenic conditions. Our results support the hypothesis that reduced expression of OBFC1 gene through functional heritable DNA variation can contribute to malignant transformation of normal melanocytes.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Predisposición Genética a la Enfermedad , Humanos , Melanoma/patología , Polimorfismo de Nucleótido Simple/genética , Neoplasias Cutáneas/patología , Melanoma Cutáneo MalignoRESUMEN
Neuroblastoma (NB) is the most common extracranial neoplasm in children. The overall outcome for high-risk NB patients is still unacceptable, therefore, it is critical to deeply understand molecular mechanisms associated with NB, which in turn can be utilized for developing drugs towards the treatment of NB. Protein kinases (TKs) play an essential role in the regulation of cell survival and proliferation. Different kinases, such as anaplastic lymphoma kinase (ALK), Aurora kinase, RET receptor tyrosine kinase, are potential therapeutic targets in various cancers, including NB. We analysed a cohort of 45 high-risk NB patients and 9 NB cell lines by a targeted-(t)NGS custom gene panel (genes codifying for the kinase domains of 90 TKs). We identified somatic variants in four TK genes (ALK, EPHB4, LMTK3 and EPHB6) in NB patients and we functionally characterized an interesting somatic variant, V871I, in EPHB4 gene. EPHB4 plays a crucial role in cardiovascular development and regulates vascularization in cancer-promoting angiogenesis, tumour growth and metastasis. Several EPHB4 mutations have previously been identified in solid and haematological tumour specimens but EPHB4 mutations were not described until now in NB. Interestingly, a re-analysis of public CGH-array showed that the EPHB4 gain is associated with advanced diseases in NB. We further demonstrated that higher EPHB4 expression is correlated to stage 4 of NB and with poor overall survival. Additionally, we also revealed that the EPHB4-V871I accounts for increased proliferation, migration and invasion properties in two NB cell lines by acting on VEGF, c-RAF and CDK4 target genes and by increasing the phosphorylation of ERK1-2 pathway. The use of two EPHB4 inhibitors, JI-101 and NVP-BHG712, was able to rescue the phenotype driven by the variant. Our study suggested that EPHB4 is a promising therapeutic target in high-risk NB.
Asunto(s)
Mutación/genética , Neuroblastoma/genética , Receptor EphB4/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neuroblastoma/patología , Proteínas Quinasas/genética , Transducción de Señal/genéticaRESUMEN
Neuroblastoma (NB) and malignant cutaneous melanoma (CMM) are neural crest cells (NCC)-derived tumors and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association studies (GWAS). We took a three-staged approach to conduct cross-disease meta-analysis of GWAS for NB and CMM (2101 NB cases and 4202 controls; 12 874 CMM cases and 23 203 controls) to identify shared loci. Findings were replicated in 1403 NB cases and 1403 controls of European ancestry and in 636 NB, 508 CMM cases and 2066 controls of Italian origin. We found a cross-association at locus 1p13.2 (rs2153977, odds ratio = 0.91, P = 5.36 × 10-8). We also detected a suggestive (P < 10-7) NB-CMM cross-association at 2q37.1 with opposite effect on cancer risk. Pathway analysis of 110 NB-CMM risk loci with P < 10-4 demonstrated enrichment of biological processes such as cell migration, cell cycle, metabolism and immune response, which are essential of human NCC development, underlying both tumors. In vitro and in silico analyses indicated that the rs2153977-T protective allele, located in an NB and CMM enhancer, decreased expression of SLC16A1 via long-range loop formation and altered a T-box protein binding site. Upon depletion of SLC16A1, we observed a decrease of cellular proliferation and invasion in both NB and CMM cell lines, suggesting its role as oncogene. This is the largest study to date examining pleiotropy across two NC cell-derived tumors identifying 1p13.2 as common susceptibility locus for NB and CMM risk. We demonstrate that combining genome-wide association studies results across cancers with same origins can identify new loci common to neuroblastoma and melanoma arising from tissues which originate from neural crest cells. Our results also show 1p13.2 confer risk to neuroblastoma and melanoma by regulating SLC16A1.
Asunto(s)
Neoplasias de las Glándulas Suprarrenales/genética , Melanoma/genética , Transportadores de Ácidos Monocarboxílicos/genética , Neuroblastoma/genética , Neoplasias Cutáneas/genética , Simportadores/genética , Neoplasias de las Glándulas Suprarrenales/patología , Diferenciación Celular/genética , Movimiento Celular/genética , Cromosomas Humanos Par 1/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Melanoma/patología , Cresta Neural/patología , Neuroblastoma/patología , Polimorfismo de Nucleótido Simple/genética , Neoplasias Cutáneas/patología , Melanoma Cutáneo MalignoRESUMEN
A previous genome-wide association study (GWAS) identified common variation at the BARD1 locus as being highly associated with susceptibility to high-risk neuroblastoma, but the mechanisms underlying this association have been not extensively investigated. Here, we performed a fine mapping analysis of BARD1 locus (2q35) using GWAS data from 556 high-risk neuroblastoma patients and 2,575 controls of European-American ancestry, and identified two independent genome-wide neuroblastoma-associated loci. Functional single-nucleotide polymorphism (SNP) prioritization identified two causative variants that independently contributed to neuroblastoma risk, and each replicated robustly in multiple independent cohorts comprising 445 high-risk cases and 3,170 controls (rs17489363: combined p = 1.07 × 10-31 , OR:1.79, 95% CI:1.62-1.98 and rs1048108: combined p = 7.27 × 10-14 , OR:0.65, 95% CI:0.58-0.73). Particularly, the T risk allele of rs17489363 in the canonical promoter region of full-length BARD1 altered binding site of the transcription factor HSF1 and correlated with low expression of full-length BARD1 mRNA and protein. Low-level expression of full-length BARD1 associated with advanced neuroblastoma. In human neuroblastoma cells, attenuating full-length BARD1 increased proliferation and invasion capacity. In conclusion, we have identified two potentially causative SNPs at the BARD1 locus associated with predisposition to high-risk neuroblastoma, and have shown that full-length BARD1 may act as tumor suppressor.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Neuroblastoma/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Alelos , Estudios de Casos y Controles , Línea Celular Tumoral , Proliferación Celular/genética , Genes Supresores de Tumor/fisiología , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Células HEK293 , Humanos , Lactante , Invasividad Neoplásica/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genéticaRESUMEN
The genetic aetiology of sporadic neuroblastoma is still largely unknown. We have identified diverse neuroblastoma susceptibility loci by genomewide association studies (GWASs); however, additional SNPs that likely contribute to neuroblastoma susceptibility prompted this investigation for identification of additional variants that are likely hidden among signals discarded by the multiple testing corrections used in the analysis of genomewide data. There is evidence suggesting the CDKN1B, coding for the cycle inhibitor p27Kip1, is involved in neuroblastoma. We thus assess whether genetic variants of CDKN1B are associated with neuroblastoma. We imputed all possible genotypes across CDKN1B locus on a discovery case series of 2101 neuroblastoma patients and 4202 genetically matched controls of European ancestry. The most significantly associated rs34330 was analysed in an independent Italian cohort of 311 cases and 709 controls. In vitro functional analysis was carried out in HEK293T and in neuroblastoma cell line SHEP-2, both transfected with pGL3-CDKN1B-CC or pGL3-CDKN1B-TT constructs. We identified an association of the rs34330 T allele (-79C/T) with the neuroblastoma risk (Pcombined = 0.002; OR = 1.17). The risk allele (T) of this single nucleotide polymorphism led to a lower transcription rate in cells transfected with a luciferase reporter driven by the polymorphic p27Kip1 promoter (P < 0.05). Three independent sets of neuroblastoma tumours carrying -79TT genotype showed a tendency towards lower CDKN1B mRNA levels. Our study shows that a functional variant, associated with a reduced CDKN1B gene transcription, influences neuroblastoma susceptibility.
Asunto(s)
Neoplasias Encefálicas/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Neuroblastoma/genética , Polimorfismo de Nucleótido Simple , Alelos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Plásmidos/química , Plásmidos/metabolismo , Regiones Promotoras Genéticas , RiesgoRESUMEN
BRCA1 Associated RING Domain 1 (BARD1) encodes a protein which interacts with the N-terminal region of BRCA1 in vivo and in vitro. The full length (FL) BARD1 mRNA includes 11 exons and encodes a protein comprising of six domains (N-terminal RING-finger domain, three Ankyrin repeats and two C-terminal BRCT domains) with different functions. Emerging data suggest that BARD1 can have both tumor-suppressor gene and oncogene functions in tumor initiation and progression. Indeed, whereas FL BARD1 protein acts as tumor-suppressor with and without BRCA1 interactions, aberrant splice variants of BARD1 have been detected in various cancers and have been shown to play an oncogenic role. Further evidence for a dualistic role came with the identification of BARD1 as a neuroblastoma predisposition gene in our genome wide association study which has demonstrated that single nucleotide polymorphisms in BARD1 can correlate with risk or can protect against cancer based on their association with the expression of FL and splice variants of BARD1. This review is an overview of how BARD1 functions in tumorigenesis with opposite effects in various types of cancer.
RESUMEN
BACKGROUND: The prognosis of children with metastatic stage 4 neuroblastoma (NB) has remained poor in the past decade. PATIENTS AND METHODS: Using microarray analyses of 342 primary tumors, we here developed and validated an easy to use gene expression-based risk score including 18 genes, which can robustly predict the outcome of stage 4 patients. RESULTS: This classifier was a significant predictor of overall survival in two independent validation cohorts [cohort 1 (n = 214): P = 6.3 × 10(-5); cohort 2 (n = 27): P = 3.1 × 10(-2)]. The prognostic value of the risk score was validated by multivariate analysis including the established markers age and MYCN status (P = 0.027). In the pooled validation cohorts (n = 241), integration of the risk score with the age and/or MYCN status identified subgroups with significantly differing overall survival (ranging from 35 to 100 %). CONCLUSION: Together, the 18-gene risk score classifier can identify patients with stage 4 NB with favorable outcome and may therefore improve risk assessment and treatment stratification of NB patients with disseminated disease.
Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neuroblastoma/genética , Preescolar , Femenino , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Estimación de Kaplan-Meier , Masculino , Análisis Multivariante , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Regresión , Reproducibilidad de los Resultados , Resultado del TratamientoRESUMEN
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.
Asunto(s)
Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neuroblastoma/genética , Transducción de Señal/genética , Adolescente , Niño , Preescolar , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Neuroblastoma/patología , Análisis de SupervivenciaRESUMEN
Paget disease of bone (PDB) is a skeletal disorder characterized by focal abnormalities of bone remodeling, which result in enlarged and deformed bones in one or more regions of the skeleton. In some cases, the pagetic tissue undergoes neoplastic transformation, resulting in osteosarcoma and, less frequently, in giant cell tumor of bone (GCT). We performed whole-exome sequencing in a large family with 14 PDB-affected members, four of whom developed GCT at multiple pagetic skeletal sites, and we identified the c.2810C>G (p.Pro937Arg) missense mutation in the zinc finger protein 687 gene (ZNF687). The mutation precisely co-segregated with the clinical phenotype in all affected family members. The sequencing of seven unrelated individuals with GCT associated with PDB (GCT/PDB) identified the same mutation in all individuals, unravelling a founder effect. ZNF687 is highly expressed during osteoclastogenesis and osteoblastogenesis and is dramatically upregulated in the tumor tissue of individuals with GCT/PDB. Interestingly, our preliminary findings showed that ZNF687, indicated as a target gene of the NFkB transcription factor by ChIP-seq analysis, is also upregulated in the peripheral blood of PDB-affected individuals with (n = 5) or without (n = 6) mutations in SQSTM1, encouraging additional studies to investigate its potential role as a biomarker of PDB risk.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Tumores de Células Gigantes/genética , Osteítis Deformante/genética , Dedos de Zinc/genética , Secuencia de Aminoácidos , Animales , Niño , Exones , Femenino , Efecto Fundador , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense , Osteoclastos/metabolismo , Linaje , Regulación hacia Arriba , Pez Cebra/genéticaRESUMEN
BACKGROUND: Glycogenosis type II (GSDII or Pompe disease) is an autosomal recessive disease, often characterized by a progressive accumulation of glycogen within lysosomes caused by a deficiency of α-1,4-glucosidase (GAA; acid maltase), a key enzyme of the glycogen degradation pathway. To date, more than 326 different mutations in the GAA gene have been identified in patients with GSDII but the course of the disease is difficult to be predicted on the basis of molecular genetic changes. Studies on large informative families are advisable to better define how genetics and non genetics factors like exercise and diet may influence the clinical phenotype. METHODS AND RESULTS: In this study, we report on clinical, instrumental, and pathological features as well as on molecular analysis of a family with 10 out of 13 siblings affected by late-onset Pompe disease. Three mutations segregated in the family, two of which are novel mutations. Siblings showing a more severe phenotype were compound heterozygous for c.118C > T [p.R40X] and c.2647-7G > A [p.N882fs] on GAA, whereas, two patients showing a mild phenotype were compound heterozygous c.2647-7G > A [p.N882fs] and c.2276G > C [p.G759A] mutations. Quantitative expression analysis showed, in the patients carrying p.R40X/ p.N882fs, a significant (p 0.01) correlation between the levels of expression of the mutated allele and the age at onset of the disease. CONCLUSIONS: As far as we know, this is the largest informative family with late-onset Pompe disease described in the literature showing a peculiar complex set of mutations of GAA gene that may partially elucidate the clinical heterogeneity of this family.
Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , alfa-Glucosidasas/genética , Adolescente , Adulto , Densidad Ósea , Niño , Electrofisiología , Predisposición Genética a la Enfermedad/genética , Genotipo , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Humanos , Mutación , Linaje , Fenotipo , Adulto JovenRESUMEN
BACKGROUND: We report an Italian family in which the proband showed a severe phenotype characterized by the association of congenital fiber type disproportion (CFTD) with a left ventricular non-compaction cardiomyopathy (LVNC). This study was focused on the identification of the responsible gene/s. METHODS AND RESULTS: Using the whole-exome sequencing approach, we identified the proband homozygous missense mutations in two genes, the myosin heavy chain 7B (MYH7B) and the integrin alpha 7 (ITGA7). Both genes are expressed in heart and muscle tissues, and both mutations were predicted to be deleterious and were not found in the healthy population.The R890C mutation in the MYH7B gene segregated with the LVNC phenotype in the examined family. It was also found in one unrelated patient affected by LVNC, confirming a causative role in cardiomyopathy.The E882K mutation in the ITGA7 gene, a key component of the basal lamina of muscle fibers, was found only in the proband, suggesting a role in CFTD. CONCLUSIONS: This study identifies two novel disease genes. Mutation in MYH7B causes a classical LVNC phenotype, whereas mutation in ITGA7 causes CFTD. Both phenotypes represent alterations of skeletal and cardiac muscle maturation and are usually not severe. The severe phenotype of the proband is most likely due to a synergic effect of these two mutations.This study provides new insights into the genetics underlying Mendelian traits and demonstrates a role for digenic inheritance in complex phenotypes.
Asunto(s)
Antígenos CD/genética , Miosinas Cardíacas/genética , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Ventrículos Cardíacos/anomalías , Cadenas alfa de Integrinas/genética , Mutación Missense , Cadenas Pesadas de Miosina/genética , Miotonía Congénita/genética , Miotonía Congénita/fisiopatología , Adolescente , Secuencia de Aminoácidos , Antígenos CD/química , Miosinas Cardíacas/química , Cardiomiopatías/etiología , Niño , Preescolar , Exoma , Femenino , Humanos , Cadenas alfa de Integrinas/química , Italia , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Cadenas Pesadas de Miosina/química , Miotonía Congénita/etiología , Linaje , Fenotipo , Análisis de Secuencia de ADN , Adulto JovenRESUMEN
Neoplastic degeneration represents a rare but serious complication of Paget's disease of bone (PDB). Although osteosarcomas have been described in up to 1% of PDB cases, giant cell tumors are less frequent and mainly occur in patients with polyostotic disease. We recently characterized a large pedigree with 14 affected members of whom four developed giant cell tumors at pagetic sites. The high number of affected subjects across multiple generations allowed us to better characterize the clinical phenotype and look for possible susceptibility loci. Of interest, all the affected members had polyostotic PDB, but subjects developing giant cell tumors showed an increased disease severity with a reduced clinical response to bisphosphonate treatment and an increased prevalence of bone pain, deformities, and fractures. Together with an increased occurrence of common pagetic complications, affected patients of this pedigree also evidenced a fivefold higher prevalence of coronary artery disease with respect to either the unaffected family members or a comparative cohort of 150 unrelated PDB cases from the same geographical area. This association was further enhanced in the four cases with PDB and giant cell tumors, all of them developing coronary artery disease before 60 years of age. Despite the early onset and the severe phenotype, PDB patients from this pedigree were negative for the presence of SQSTM1 or TNFRSF11A mutations, previously associated with enhanced disease severity. Genome-wide linkage analysis identified six possible candidate regions on chromosomes 1, 5, 6, 8, 10, and 20. Because the chromosome 8 and 10 loci were next to the TNFRSF11B and OPTN genes, we extended the genetic screening to these two genes, but we failed to identify any causative mutation at both the genomic and transcription level, suggesting that a different genetic defect is associated with PDB and potentially giant cell tumor of bone in this pedigree.
Asunto(s)
Ligamiento Genético , Tumores de Células Gigantes/complicaciones , Tumores de Células Gigantes/genética , Osteítis Deformante/complicaciones , Osteítis Deformante/genética , Linaje , Adulto , Anciano , Femenino , Geografía , Humanos , Masculino , Persona de Mediana Edad , FenotipoRESUMEN
BACKGROUND: Experimental evidence indicate that melatonin regulates some renal tubular functions via specific melatonin receptors (MTNRs) located in the kidney of several avian and mammalian species, including humans. We hypothesized that single nucleotide polymorphisms (SNPs) in the melatonin receptor 1A gene (MTNR1A) might influence the risk of calcium nephrolithiasis. METHODS: We performed a systematic analysis of the MTNR1A gene in 246 recurrent calcium stone formers (136 men, 110 women; mean age 40.2 ± 12.0 years; body mass index 25.8 ± 4.5 kg/m2) and 269 healthy controls comparable for age and gender without a history of nephrolithiasis. RESULTS: Two SNPs in Intron 1 of MTNR1A were significantly associated with calcium nephrolithiasis: rs13140012 (P = 0.0004) and rs6553010 (P = 0.009). The haplotypes resulting from the two SNPs were also differently distributed between stone formers and controls, the haplotype A-T being more represented among stone formers (P = 0.00001) and the haplotype T-C being more common in healthy controls (P = 0.00001). Preliminary functional studies showed that the SNP rs13140012 could modify the binding sites for transcription factors. CONCLUSION: The results of this case-control study indicate a strong association between allelic variants of MTNR1A and recurrent calcium nephrolithiasis.