Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 15: 635611, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859557

RESUMEN

Human adaptive behavior in sensorimotor control is aimed to increase the confidence in feedforward mechanisms when sensory afferents are uncertain. It is thought that these feedforward mechanisms rely on predictions from internal models. We investigate whether the brain uses an internal model of physical laws (gravitational and inertial forces) to help estimate body equilibrium when tactile inputs from the foot sole are depressed by carrying extra weight. As direct experimental evidence for such a model is limited, we used Judoka athletes thought to have built up internal models of external loads (i.e., opponent weight management) as compared with Non-Athlete participants and Dancers (highly skilled in balance control). Using electroencephalography, we first (experiment 1) tested the hypothesis that the influence of tactile inputs was amplified by descending cortical efferent signals. We compared the amplitude of P1N1 somatosensory cortical potential evoked by electrical stimulation of the foot sole in participants standing still with their eyes closed. We showed smaller P1N1 amplitudes in the Load compared to No Load conditions in both Non-Athletes and Dancers. This decrease neural response to tactile stimulation was associated with greater postural oscillations. By contrast in the Judoka's group, the neural early response to tactile stimulation was unregulated in the Load condition. This suggests that the brain can selectively increase the functional gain of sensory inputs, during challenging equilibrium tasks when tactile inputs were mechanically depressed by wearing a weighted vest. In Judokas, the activation of regions such as the right posterior inferior parietal cortex (PPC) as early as the P1N1 is likely the source of the neural responses being maintained similar in both Load and No Load conditions. An overweight internal model stored in the right PPC known to be involved in maintaining a coherent representation of one's body in space can optimize predictive mechanisms in situations with high balance constraints (Experiment 2). This hypothesis has been confirmed by showing that postural reaction evoked by a translation of the support surface on which participants were standing wearing extra-weight was improved in Judokas.

2.
Gait Posture ; 80: 246-252, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32559643

RESUMEN

BACKGROUND: The anticipatory postural adjustments (APA) associated with step initiation are impaired in obese patients (e.g. longer duration, greater lateral center of pressure excursion). This could arise from the known altered internal representation of the body in obese individuals as this representation is crucial for enhancing the processing of foot cutaneous inputs prior to step initiation and for setting the APA. RESEARCH QUESTION: The purpose of the study was to examine if the processing of foot cutaneous inputs and the preparation of the APA when planning a step are impaired in obese patients due to their damaged body internal representation (BIR). We also investigated whether these sensorimotor processes will be restored after a 15-day intervention program composed of motor and cognitive activities engaging the BIR without aiming weight loss. METHODS: We compared, prior to (D1) and after (D15) the program, the amplitude of the cortical response evoked by foot cutaneous stimulation (SEP) occurring either during quiet standing or during the planning of a step in 18 obese patients (mean body mass index, BMI: 35). The APA were analyzed by measuring the amplitude and latency of the lateral force exerted on the ground. RESULTS AND SIGNIFICANCE: The SEP amplitude was not significantly different between the standing and stepping tasks at D1, but increased in the stepping task at D15. This enhanced sensory processing was associated with an increased activation of the posterior parietal cortex, suggesting a stronger involvement of the body representation during the planning of the stepping movement after the program. These cortical changes could have contributed to the changes in the temporal dimension of the APA observed at D15. These results suggest that programs targeting different dimensions of the BIR could be beneficial in improving the dynamic balance in obesity.


Asunto(s)
Anticipación Psicológica , Imagen Corporal , Obesidad/fisiopatología , Obesidad/psicología , Equilibrio Postural/fisiología , Corteza Somatosensorial/fisiología , Adulto , Femenino , Pie/fisiología , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...