Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cancers (Basel) ; 15(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36831507

RESUMEN

In this longitudinal study, cell-free tumour DNA (a liquid biopsy) from plasma was explored as a prognostic biomarker for gastro-oesophageal cancer. Both tumour-informed and tumour-agnostic approaches for plasma variant filtering were evaluated in 47 participants. This was possible through sequencing of DNA from tissue biopsies from all participants and cell-free DNA from plasma sampled before and after surgery (n = 42), as well as DNA from white blood cells (n = 21) using a custom gene panel with and without unique molecular identifiers (UMIs). A subset of the plasma samples (n = 12) was also assayed with targeted droplet digital PCR (ddPCR). In 17/31 (55%) diagnostic plasma samples, tissue-verified cancer-associated variants could be detected by the gene panel. In the tumour-agnostic approach, 26 participants (59%) had cancer-associated variants, and UMIs were necessary to filter the true variants from the technical artefacts. Additionally, clonal haematopoietic variants could be excluded using the matched white blood cells or follow-up plasma samples. ddPCR detected its targets in 10/12 (83%) and provided an ultra-sensitive method for follow-up. Detectable cancer-associated variants in plasma correlated to a shorter overall survival and shorter time to progression, with a significant correlation for the tumour-informed approaches. In summary, liquid biopsy gene panel sequencing using a tumour-agnostic approach can be applied to all patients regardless of the presence of a tissue biopsy, although this requires UMIs and the exclusion of clonal haematopoietic variants. However, if sequencing data from tumour biopsies are available, a tumour-informed approach improves the value of cell-free tumour DNA as a negative prognostic biomarker in gastro-oesophageal cancer patients.

3.
Blood Adv ; 7(12): 2794-2806, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36696464

RESUMEN

Patients with chronic lymphocytic leukemia (CLL) progressing on ibrutinib constitute an unmet need. Though Bruton tyrosine kinase (BTK) and PLCG2 mutations are associated with ibrutinib resistance, their frequency and relevance to progression are not fully understood. In this multicenter retrospective observational study, we analyzed 98 patients with CLL on ibrutinib (49 relapsing after an initial response and 49 still responding after ≥1 year of continuous treatment) using a next-generation sequencing (NGS) panel (1% sensitivity) comprising 13 CLL-relevant genes including BTK and PLCG2. BTK hotspot mutations were validated by droplet digital polymerase chain reaction (ddPCR) (0.1% sensitivity). By integrating NGS and ddPCR results, 32 of 49 relapsing cases (65%) carried at least 1 hotspot BTK and/or PLCG2 mutation(s); in 6 of 32, BTK mutations were only detected by ddPCR (variant allele frequency [VAF] 0.1% to 1.2%). BTK/PLCG2 mutations were also identified in 6 of 49 responding patients (12%; 5/6 VAF <10%), of whom 2 progressed later. Among the relapsing patients, the BTK-mutated (BTKmut) group was enriched for EGR2 mutations, whereas BTK-wildtype (BTKwt) cases more frequently displayed BIRC3 and NFKBIE mutations. Using an extended capture-based panel, only BRAF and IKZF3 mutations showed a predominance in relapsing cases, who were enriched for del(8p) (n = 11; 3 BTKwt). Finally, no difference in TP53 mutation burden was observed between BTKmut and BTKwt relapsing cases, and ibrutinib treatment did not favor selection of TP53-aberrant clones. In conclusion, we show that BTK/PLCG2 mutations were absent in a substantial fraction (35%) of a real-world cohort failing ibrutinib, and propose additional mechanisms contributing to resistance.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Agammaglobulinemia Tirosina Quinasa/genética , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Resistencia a Antineoplásicos/genética , Piperidinas , Recurrencia
4.
Leukemia ; 37(2): 339-347, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566271

RESUMEN

Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Pronóstico , Factor 88 de Diferenciación Mieloide/genética , Mutación , Fenotipo
5.
BJU Int ; 130(1): 92-101, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34375486

RESUMEN

OBJECTIVES: To investigate gene alterations as diagnostic and prognostic markers in upper tract urothelial carcinoma (UTUC). PATIENTS AND METHODS: Patients with UTUC who underwent nephroureterectomy between 2005 and 2012 were followed until November 2020. DNA was extracted from paraffin-embedded tumour tissue. Next-generation sequencing using a 388-gene panel was performed. First a blinded analysis using principal component analysis and hierarchical clustering was used to search for patterns of mutations. Then a comparative analysis using analysis of variance (ANOVA) was used to search for mutations enriched in groups of various grades, stages, and survival. In addition, careful manual annotation was used to identify pathogenic mutations over-represented in tumours of high grade/stage and/or poor survival. RESULTS: A total of 39 patients were included. All tumour stages and grades were represented in the cohort. The median follow-up was 10.6 years. In all, 11 patients died from UTUC during the follow-up. Tumour mutational burden showed a statistically significant correlation with stage, grade, and stage + grade. Grade 1, Grade 2, and Grade 3 tumours had different mutational patterns. Patients who died from UTUC had pathogenic mutations in specific genes e.g. tumour protein p53 (TP53) and HRas proto-oncogene, GTPase (HRAS). Patients with Ta Grade 1 tumours with a known pathogenic fibroblast growth factor receptor 3 (FGFR3) mutation did not die from UTUC. CONCLUSION: The genetic analysis was highly concordant with histopathological features and added prognostic information in some cases. Thus, results from genomic profiling may contribute to the choice of treatment and follow-up regimens in the future.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias Renales , Neoplasias Ureterales , Neoplasias de la Vejiga Urinaria , Carcinoma de Células Transicionales/diagnóstico , Carcinoma de Células Transicionales/genética , Genómica/métodos , Humanos , Riñón/anomalías , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Neoplasias Renales/patología , Nefroureterectomía , Pronóstico , Neoplasias Ureterales/patología , Neoplasias de la Vejiga Urinaria/genética , Anomalías Urogenitales
6.
Nat Cancer ; 2(11): 1224-1242, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34870237

RESUMEN

Despite major advancements in lung cancer treatment, long-term survival is still rare, and a deeper understanding of molecular phenotypes would allow the identification of specific cancer dependencies and immune evasion mechanisms. Here we performed in-depth mass spectrometry (MS)-based proteogenomic analysis of 141 tumors representing all major histologies of non-small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking differences in immune cell composition and subtype-specific expression of immune checkpoints. Unexpectedly, high neoantigen burden was linked to global hypomethylation and complex neoantigens mapped to genomic regions, such as endogenous retroviral elements and introns, in immune-cold subtypes. Further, we linked immune evasion with LAG3 via STK11 mutation-dependent HNF1A activation and FGL1 expression. Finally, we develop a data-independent acquisition MS-based NSCLC subtype classification method, validate it in an independent cohort of 208 NSCLC cases and demonstrate its clinical utility by analyzing an additional cohort of 84 late-stage NSCLC biopsy samples.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteogenómica , Carcinoma de Pulmón de Células no Pequeñas/genética , Fibrinógeno/uso terapéutico , Genómica/métodos , Humanos , Evasión Inmune/genética , Neoplasias Pulmonares/genética
7.
Circ Genom Precis Med ; 11(9): e002030, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30354327

RESUMEN

BACKGROUND: Tobacco smoking is a major risk factor for atherosclerotic disease and has been associated with DNA methylation (DNAm) changes in blood cells. However, whether smoking influences DNAm in the diseased vascular wall is unknown but may prove crucial in understanding the pathophysiology of atherosclerosis. In this study, we associated current tobacco smoking to epigenome-wide DNAm in atherosclerotic plaques from patients undergoing carotid endarterectomy. METHODS: DNAm at commonly methylated sites (cytosine-guanine nucleotide pairs separated by a phospho-group [CpGs]) was assessed in atherosclerotic plaque samples and peripheral blood samples from 485 carotid endarterectomy patients. We tested the association of current tobacco smoking with DNAm corrected for age and sex. To control for bias and inflation because of cellular heterogeneity, we applied a Bayesian method to estimate an empirical null distribution as implemented by the R package bacon. Replication of the smoking-associated methylated CpGs in atherosclerotic plaques was executed in the second sample of 190 carotid endarterectomy patients, and results were meta-analyzed using a fixed-effects model. RESULTS: Tobacco smoking was significantly associated to differential DNAm in atherosclerotic lesions of 4 CpGs (false discovery rate <0.05) mapped to 2 different genes ( AHRR, ITPK1) and 17 CpGs mapped to 8 genes and RNAs in blood. The strongest associations were found for CpGs mapped to the gene AHRR, a repressor of the aryl hydrocarbon receptor transcription factor involved in xenobiotic detoxification. One of these methylated CpGs were found to be regulated by local genetic variation. CONCLUSIONS: The risk factor tobacco smoking associates with DNAm at multiple loci in carotid atherosclerotic lesions. These observations support further investigation of the relationship between risk factors and epigenetic regulation in atherosclerotic disease.


Asunto(s)
Aterosclerosis/genética , Enfermedades de las Arterias Carótidas/genética , Metilación de ADN , Epigenómica/métodos , Estudio de Asociación del Genoma Completo/métodos , Fumar/efectos adversos , Anciano , Aterosclerosis/etiología , Enfermedades de las Arterias Carótidas/etiología , Islas de CpG/genética , Endarterectomía Carotidea/métodos , Endarterectomía Carotidea/estadística & datos numéricos , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Placa Aterosclerótica/etiología , Placa Aterosclerótica/genética
8.
Circ Genom Precis Med ; 11(9): e002115, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30354329

RESUMEN

BACKGROUND: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms. METHODS: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression. RESULTS: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10-6 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood. CONCLUSIONS: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics.


Asunto(s)
Aterosclerosis/genética , Enfermedades Cardiovasculares/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Proteínas Adaptadoras del Transporte Vesicular/genética , Anciano , Alelos , Enfermedades de las Arterias Carótidas/genética , Femenino , Regulación de la Expresión Génica , Genotipo , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Masculino , Persona de Mediana Edad , Placa Aterosclerótica/genética , Proteínas Represoras/genética
9.
Sci Rep ; 8(1): 3434, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467471

RESUMEN

Genome-wide association studies (GWAS) have identified over two hundred chromosomal loci that modulate risk of coronary artery disease (CAD). The genes affected by variants at these loci are largely unknown and an untapped resource to improve our understanding of CAD pathophysiology and identify potential therapeutic targets. Here, we prioritized 68 genes as the most likely causal genes at genome-wide significant loci identified by GWAS of CAD and examined their regulatory roles in 286 metabolic and vascular tissue gene-protein sub-networks ("modules"). The modules and genes within were scored for CAD druggability potential. The scoring enriched for targets of cardiometabolic drugs currently in clinical use and in-depth analysis of the top-scoring modules validated established and revealed novel target tissues, biological processes, and druggable targets. This study provides an unprecedented resource of tissue-defined gene-protein interactions directly affected by genetic variance in CAD risk loci.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Redes Reguladoras de Genes , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Descubrimiento de Drogas , Redes Reguladoras de Genes/efectos de los fármacos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Terapia Molecular Dirigida , Polimorfismo de Nucleótido Simple/efectos de los fármacos , Sitios de Carácter Cuantitativo/efectos de los fármacos
10.
Atherosclerosis ; 267: 39-48, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29100060

RESUMEN

BACKGROUND AND AIMS: Mitochondrial damage and augmented production of reactive oxygen species (ROS) may represent an intermediate step by which hypercholesterolemia exacerbates atherosclerotic lesion formation. METHODS: To test this hypothesis, in mice with severe but genetically reversible hypercholesterolemia (i.e. the so called Reversa mouse model), we performed time-resolved analyses of mitochondrial transcriptome in the aortic arch employing a systems-level network approach. RESULTS: During hypercholesterolemia, we observed a massive down-regulation (>28%) of mitochondrial genes, specifically at the time of rapid atherosclerotic lesion expansion and foam cell formation, i.e. between 30 and 40 weeks of age. Both phenomena - down-regulation of mitochondrial genes and lesion expansion - were largely reversible by genetically lowering plasma cholesterol (by >80%, from 427 to 54 ± 31 mg/L) at 30 weeks. Co-expression network analysis revealed that both mitochondrial signature genes were highly connected in two modules, negatively correlating with lesion size and supported as causal for coronary artery disease (CAD) in humans, as expression-associated single nucleotide polymorphisms (eSNPs) representing their genes overlapped markedly with established disease risk loci. Within these modules, we identified the transcription factor estrogen related receptor (ERR)-α and its co-factors PGC1-α and -ß, i.e. two members of the peroxisome proliferator-activated receptor γ co-activator 1 family of transcription regulators, as key regulatory genes. Together, these factors are known as major orchestrators of mitochondrial biogenesis and antioxidant responses. CONCLUSIONS: Using a network approach, we demonstrate how hypercholesterolemia could hamper mitochondrial activity during atherosclerosis progression and pinpoint potential therapeutic targets to counteract these processes.


Asunto(s)
Aterosclerosis/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Regulación de la Expresión Génica , Genes Mitocondriales , Hipercolesterolemia/metabolismo , Animales , Antioxidantes/metabolismo , Aorta Torácica/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Factores de Riesgo , Biología de Sistemas , Factores de Transcripción/metabolismo , Transcriptoma , Receptor Relacionado con Estrógeno ERRalfa
11.
Circ Cardiovasc Genet ; 10(2)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28320757

RESUMEN

BACKGROUND: As genome-wide association efforts, such as CARDIoGRAM and METASTROKE, are ongoing to reveal susceptibility loci for their underlying disease-atherosclerotic disease-identification of candidate genes explaining the associations of these loci has proven the main challenge. Many disease susceptibility loci colocalize with DNA regulatory elements, which influence gene expression through chromatin interactions. Therefore, the target genes of these regulatory elements can be considered candidate genes. Applying these biological principles, we used an alternative approach to annotate susceptibility loci and identify candidate genes for human atherosclerotic disease based on circular chromosome conformation capture followed by sequencing. METHODS AND RESULTS: In human monocytes and coronary endothelial cells, we generated 63 chromatin interaction data sets for 37 active DNA regulatory elements that colocalize with known susceptibility loci for coronary artery disease (CARDIoGRAMplusC4D) and large artery stroke (METASTROKE). By circular chromosome conformation capture followed by sequencing, we identified a physical 3-dimensional interaction with 326 candidate genes expressed in at least 1 of these cell types, of which 294 have not been reported before. We highlight 16 genes based on expression quantitative trait loci. CONCLUSIONS: Our findings provide additional candidate-gene annotation for 37 disease susceptibility loci for human atherosclerotic disease that are of potential interest to better understand the complex pathophysiology of cardiovascular diseases.


Asunto(s)
Aterosclerosis/genética , Cromatina/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Anotación de Secuencia Molecular , Aterosclerosis/metabolismo , Aterosclerosis/patología , Línea Celular , Cromatina/metabolismo , Células Endoteliales/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Monocitos/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 37(3): 534-542, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28062492

RESUMEN

OBJECTIVE: Recently, poliovirus receptor-related 2 (Pvrl2) emerged as a top gene in a global gene expression study aiming to detect plasma cholesterol-responsive genes causally related to atherosclerosis regression in hypercholesterolemic mice. PVRL2 is an adherens junction protein implied to play a role in transendothelial migration of leukocytes, a key feature in atherosclerosis development. In this study, we investigated the effect of Pvrl2 deficiency on atherosclerosis development and transendothelial migration of leukocytes activity. APPROACH AND RESULTS: Pvrl2-deficient mice bred onto an atherosclerosis-prone background (Pvrl2-/-Ldlr-/-Apob100/100) had less atherosclerotic lesions and more stable plaques compared with littermate controls (Pvrl2+/+Ldlr-/-Apob100/100). Pvrl2-/-Ldlr-/-Apob100/100 mice also showed a 49% decrease in transendothelial migration of leukocytes activity observed using the in vivo air pouch model. In accordance, augmented arterial wall expression of Pvrl2 during atherosclerosis progression coincided with an increased gene expression of migrating leukocytes into the vessel wall. Both in human and mice, gene and protein expression of PVRL2 was predominantly observed in the vascular endothelium according to the immunohistochemical and gene expression data. In addition, the cholesterol responsiveness of PVRL2 was also observed in humans. CONCLUSIONS: PVRL2 is a plasma cholesterol-responsive gene acting at endothelial sites of vascular inflammation that could potentially be a new therapeutic target for atherosclerosis prevention through its suggested transendothelial migration of leukocytes modulating activity.


Asunto(s)
Aorta Torácica/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Moléculas de Adhesión Celular/metabolismo , Colesterol/sangre , Endotelio Vascular/metabolismo , Leucocitos/metabolismo , Migración Transendotelial y Transepitelial , Animales , Aorta Torácica/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteína B-100 , Apolipoproteínas B/deficiencia , Apolipoproteínas B/genética , Aterosclerosis/genética , Aterosclerosis/patología , Adhesión Celular , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endotelio Vascular/patología , Predisposición Genética a la Enfermedad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nectinas , Fenotipo , Interferencia de ARN , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de Señal , Factores de Tiempo , Transfección
13.
Genome Biol ; 17(1): 247, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27903283

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) have revealed many susceptibility loci for complex genetic diseases. For most loci, the causal genes have not been identified. Currently, the identification of candidate genes is predominantly based on genes that localize close to or within identified loci. We have recently shown that 92 of the 163 inflammatory bowel disease (IBD)-loci co-localize with non-coding DNA regulatory elements (DREs). Mutations in DREs can contribute to IBD pathogenesis through dysregulation of gene expression. Consequently, genes that are regulated by these 92 DREs are to be considered as candidate genes. This study uses circular chromosome conformation capture-sequencing (4C-seq) to systematically analyze chromatin-interactions at IBD susceptibility loci that localize to regulatory DNA. RESULTS: Using 4C-seq, we identify genomic regions that physically interact with the 92 DRE that were found at IBD susceptibility loci. Since the activity of regulatory elements is cell-type specific, 4C-seq was performed in monocytes, lymphocytes, and intestinal epithelial cells. Altogether, we identified 902 novel IBD candidate genes. These include genes specific for IBD-subtypes and many noteworthy genes including ATG9A and IL10RA. We show that expression of many novel candidate genes is genotype-dependent and that these genes are upregulated during intestinal inflammation in IBD. Furthermore, we identify HNF4α as a potential key upstream regulator of IBD candidate genes. CONCLUSIONS: We reveal many novel and relevant IBD candidate genes, pathways, and regulators. Our approach complements classical candidate gene identification, links novel genes to IBD and can be applied to any existing GWAS data.


Asunto(s)
Cromatina/genética , Epistasis Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/genética , Sitios de Carácter Cuantitativo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Subunidad alfa del Receptor de Interleucina-10/genética , Subunidad alfa del Receptor de Interleucina-10/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos Nucleicos , Reproducibilidad de los Resultados , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
14.
Science ; 353(6301): 827-30, 2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27540175

RESUMEN

Genome-wide association studies (GWAS) have identified hundreds of cardiometabolic disease (CMD) risk loci. However, they contribute little to genetic variance, and most downstream gene-regulatory mechanisms are unknown. We genotyped and RNA-sequenced vascular and metabolic tissues from 600 coronary artery disease patients in the Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study (STARNET). Gene expression traits associated with CMD risk single-nucleotide polymorphism (SNPs) identified by GWAS were more extensively found in STARNET than in tissue- and disease-unspecific gene-tissue expression studies, indicating sharing of downstream cis-/trans-gene regulation across tissues and CMDs. In contrast, the regulatory effects of other GWAS risk SNPs were tissue-specific; abdominal fat emerged as an important gene-regulatory site for blood lipids, such as for the low-density lipoprotein cholesterol and coronary artery disease risk gene PCSK9 STARNET provides insights into gene-regulatory mechanisms for CMD risk loci, facilitating their translation into opportunities for diagnosis, therapy, and prevention.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Regulación de la Expresión Génica , Grasa Abdominal/metabolismo , Enfermedad de Alzheimer/genética , LDL-Colesterol/sangre , LDL-Colesterol/genética , Enfermedad de la Arteria Coronaria/epidemiología , Femenino , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple , Proproteína Convertasa 9 , Proproteína Convertasas/genética , Sitios de Carácter Cuantitativo , Riesgo , Serina Endopeptidasas/genética
15.
Cell Syst ; 2(3): 196-208, 2016 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-27135365

RESUMEN

Inferring molecular networks can reveal how genetic perturbations interact with environmental factors to cause common complex diseases. We analyzed genetic and gene expression data from seven tissues relevant to coronary artery disease (CAD) and identified regulatory gene networks (RGNs) and their key drivers. By integrating data from genome-wide association studies, we identified 30 CAD-causal RGNs interconnected in vascular and metabolic tissues, and we validated them with corresponding data from the Hybrid Mouse Diversity Panel. As proof of concept, by targeting the key drivers AIP, DRAP1, POLR2I, and PQBP1 in a cross-species-validated, arterial-wall RGN involving RNA-processing genes, we re-identified this RGN in THP-1 foam cells and independent data from CAD macrophages and carotid lesions. This characterization of the molecular landscape in CAD will help better define the regulation of CAD candidate genes identified by genome-wide association studies and is a first step toward achieving the goals of precision medicine.


Asunto(s)
Redes Reguladoras de Genes , Animales , Proteínas Portadoras , Enfermedad de la Arteria Coronaria , Proteínas de Unión al ADN , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Proteínas Nucleares , Proteínas Represoras
16.
Arterioscler Thromb Vasc Biol ; 36(6): 1240-6, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27079880

RESUMEN

OBJECTIVE: The genetically modified mouse is the most commonly used animal model for studying the pathogenesis of atherosclerotic disease. We aimed to assess if mice atherosclerosis-related genes could be validated in human disease through examination of results from genome-wide association studies. APPROACH AND RESULTS: We performed a systematic review to identify atherosclerosis-causing genes in mice and carried out gene-based association tests of their human orthologs for an association with human coronary artery disease and human large artery ischemic stroke. Moreover, we investigated the association of these genes with human atherosclerotic plaque characteristics. In addition, we assessed the presence of tissue-specific cis-acting expression quantitative trait loci for these genes in humans. Finally, using pathway analyses we show that the putative atherosclerosis-causing genes revealed few associations with human coronary artery disease, large artery ischemic stroke, or atherosclerotic plaque characteristics, despite the fact that the majority of these genes have cis-acting expression quantitative trait loci. CONCLUSIONS: A role for genes that has been observed in mice for atherosclerotic lesion development could scarcely be confirmed by studying associations of disease development with common human genetic variants. The value of murine atherosclerotic models for selection of therapeutic targets in human disease remains unclear.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Perfilación de la Expresión Génica , Arteriosclerosis Intracraneal/genética , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular/genética , Animales , Biología Computacional , Enfermedad de la Arteria Coronaria/patología , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Arteriosclerosis Intracraneal/patología , Ratones , Fenotipo , Placa Aterosclerótica , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Especificidad de la Especie , Accidente Cerebrovascular/patología
17.
Arterioscler Thromb Vasc Biol ; 35(10): 2207-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26293461

RESUMEN

OBJECTIVE: Genome-wide association studies have to date identified 159 significant and suggestive loci for coronary artery disease (CAD). We now report comprehensive bioinformatics analyses of sequence variation in these loci to predict candidate causal genes. APPROACH AND RESULTS: All annotated genes in the loci were evaluated with respect to protein-coding single-nucleotide polymorphism and gene expression parameters. The latter included expression quantitative trait loci, tissue specificity, and miRNA binding. High priority candidate genes were further identified based on literature searches and our experimental data. We conclude that the great majority of causal variations affecting CAD risk occur in noncoding regions, with 41% affecting gene expression robustly versus 6% leading to amino acid changes. Many of these genes differed from the traditionally annotated genes, which was usually based on proximity to the lead single-nucleotide polymorphism. Indeed, we obtained evidence that genetic variants at CAD loci affect 98 genes which had not been linked to CAD previously. CONCLUSIONS: Our results substantially revise the list of likely candidates for CAD and suggest that genome-wide association studies efforts in other diseases may benefit from similar bioinformatics analyses.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Enfermedad de la Arteria Coronaria/fisiopatología , Femenino , Sitios Genéticos , Variación Genética , Humanos , Masculino , MicroARNs/genética , Valor Predictivo de las Pruebas , Regiones Promotoras Genéticas/genética
18.
Atherosclerosis ; 239(2): 528-38, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25721704

RESUMEN

BACKGROUND: The eicosanoid genes ALOX5, ALOX5AP and LTA4H have been implicated in atherosclerosis. We assessed the impact of common variants in these genes on gene expression, circulating protein levels, and atherosclerotic plaque phenotypes. METHODS: We included patients from the Stockholm Atherosclerosis Gene Expression study (STAGE, N = 109), and the Athero-Express Biobank Study (AE, N = 1443). We tested 1453 single-nucleotide variants (SNVs) in ALOX5, ALOX5AP and LTA4H for association with gene expression in STAGE. We also tested these SNVs for association with seven histologically defined plaque phenotypes in the AE (which included calcification, collagen, cellular content, atheroma size, and intraplaque vessel density and hemorrhage). RESULTS: We replicate a known cis-eQTL (rs6538697, p = 1.96 × 10(-6)) for LTA4H expression in whole blood of patients from STAGE. We found no significant association for any of the SNVs tested with serum levels of ALOX5 or ALOX5AP (p > 5.79 × 10(-4)). For atherosclerotic plaque phenotypes the strongest associations were found for intraplaque vessel density and smooth muscle cells in the ALOX5AP locus (p > 1.67 × 10(-4)). CONCLUSIONS: We replicate a known eQTL for LTA4H expression in whole blood using STAGE data. We found no associations of variants in and around ALOX5, ALOX5AP and LTA4H with serum ALOX5 or ALOX5AP levels, or plaque phenotypes. On the supposition that these genes play a causal role in atherosclerosis, these results suggest that common variants in these loci play a limited role (if any) in influencing advanced atherosclerotic plaque morphology to the extent that it impacts atherosclerotic disease.


Asunto(s)
Proteínas Activadoras de la 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/genética , Aterosclerosis/genética , Enfermedades de las Arterias Carótidas/genética , Enfermedad de la Arteria Coronaria/genética , Epóxido Hidrolasas/genética , Arteria Femoral/enzimología , Genómica , Placa Aterosclerótica , Polimorfismo de Nucleótido Simple , Anciano , Aterosclerosis/diagnóstico , Aterosclerosis/enzimología , Bancos de Muestras Biológicas , Enfermedades de las Arterias Carótidas/diagnóstico , Enfermedades de las Arterias Carótidas/enzimología , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/enzimología , Femenino , Arteria Femoral/patología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Fenotipo , Sitios de Carácter Cuantitativo , Suecia
19.
Circ Cardiovasc Genet ; 8(2): 305-15, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25578447

RESUMEN

BACKGROUND: Despite recent discoveries of new genetic risk factors, the majority of risk for coronary artery disease (CAD) remains elusive. As the most proximal sensor of DNA variation, RNA abundance can help identify subpopulations of genetic variants active in and across tissues mediating CAD risk through gene expression. METHODS AND RESULTS: By generating new genomic data on DNA and RNA samples from the Stockholm Atherosclerosis Gene Expression (STAGE) study, 8156 cis-acting expression quantitative trait loci (eQTLs) for 6450 genes across 7 CAD-relevant tissues were detected. The inherited risk enrichments of tissue-defined sets of these eQTLs were assessed using 2 independent genome-wide association data sets. eQTLs acting across increasing numbers of tissues were found increasingly enriched for CAD risk and resided at regulatory hot spots. The risk enrichment of 42 eQTLs acting across 5 to 6 tissues was particularly high (≤7.3-fold) and confirmed in the combined genome-wide association data from Coronary Artery Disease Genome Wide Replication And Meta-Analysis Consortium. Sixteen of the 42 eQTLs associated with 19 master regulatory genes and 29 downstream gene sets (n>30) were further risk enriched comparable to that of the 153 genome-wide association risk single-nucleotide polymorphisms established for CAD (8.4-fold versus 10-fold). Three gene sets, governed by the master regulators FLYWCH1, PSORSIC3, and G3BP1, segregated the STAGE patients according to extent of CAD, and small interfering RNA targeting of these master regulators affected cholesterol-ester accumulation in foam cells of the THP1 monocytic cell line. CONCLUSIONS: eQTLs acting across multiple tissues are significant carriers of inherited risk for CAD. FLYWCH1, PSORSIC3, and G3BP1 are novel master regulatory genes in CAD that may be suitable targets.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Bases de Datos Genéticas , Regulación de la Expresión Génica , Proteínas Musculares , Sitios de Carácter Cuantitativo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Especificidad de Órganos/genética
20.
PLoS Genet ; 10(2): e1004201, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586211

RESUMEN

Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-)Apob (100/100) Mttp (flox/flox)Mx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/sangre , Colesterol/sangre , Receptores de LDL/genética , Animales , Aorta/efectos de los fármacos , Apolipoproteínas B/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Regulación de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/biosíntesis , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Ratones , Ratones Transgénicos , Proteínas Nucleares/biosíntesis , Ribonucleoproteínas/biosíntesis , Factores de Empalme Serina-Arginina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA