Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(20): 14246-14259, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728108

RESUMEN

The hydrogenation of CO2 holds promise for transforming the production of renewable fuels and chemicals. However, the challenge lies in developing robust and selective catalysts for this process. Transition metal oxide catalysts, particularly cobalt oxide, have shown potential for CO2 hydrogenation, with performance heavily reliant on crystal phase and morphology. Achieving precise control over these catalyst attributes through colloidal nanoparticle synthesis could pave the way for catalyst and process advancement. Yet, navigating the complexities of colloidal nanoparticle syntheses, governed by numerous input variables, poses a significant challenge in systematically controlling resultant catalyst features. We present a multivariate Bayesian optimization, coupled with a data-driven classifier, to map the synthetic design space for colloidal CoO nanoparticles and simultaneously optimize them for multiple catalytically relevant features within a target crystalline phase. The optimized experimental conditions yielded small, phase-pure rock salt CoO nanoparticles of uniform size and shape. These optimized nanoparticles were then supported on SiO2 and assessed for thermocatalytic CO2 hydrogenation against larger, polydisperse CoO nanoparticles on SiO2 and a conventionally prepared catalyst. The optimized CoO/SiO2 catalyst consistently exhibited higher activity and CH4 selectivity (ca. 98%) across various pretreatment reduction temperatures as compared to the other catalysts. This remarkable performance was attributed to particle stability and consistent H* surface coverage, even after undergoing the highest temperature reduction, achieving a more stable catalytic species that resists sintering and carbon occlusion.

2.
Nat Commun ; 14(1): 2180, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069165

RESUMEN

Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.


Asunto(s)
Enzimas AlkB , Alcanos , Carbono , Alcanos/química , Biodegradación Ambiental , Carbono/metabolismo , Oxidación-Reducción , Enzimas AlkB/química
3.
J Inorg Biochem ; 219: 111409, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33752122

RESUMEN

Interest in understanding the environmental distribution of the alkane monooxygenase (AlkB) enzyme led to the identification of over 100 distinct alkane monooxygenase (AlkB) enzymes containing a covalently bound, or fused, rubredoxin. The rubredoxin-fused AlkB from Dietzia cinnamea was cloned as a full-length protein and as a truncated protein with the rubredoxin domain deleted. A point mutation (V91W) was introduced into the full-length protein, with the goal of assessing how steric bulk in the putative substrate channel might affect selectivity. Based on activity studies with alkane and alkene substrates, the rubredoxin-fused AlkB oxidizes a similar range of alkane substrates relative to its rubredoxin domain-deletion counterpart. Oxidation of terminal alkenes generated both an epoxide and a terminal aldehyde. The products of V91W-mutant-catalyzed oxidation of alkenes had a higher aldehyde-to-epoxide ratio than the products formed in the presence of the wild type protein. These results are consistent with this mutation causing a structural change impacting substrate positioning.


Asunto(s)
Alcanos/metabolismo , Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Rubredoxinas/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Alcanos/química , Alquenos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Biología Computacional/métodos , Humanos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxidación-Reducción , Mutación Puntual , Prevalencia , Rubredoxinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA