RESUMEN
1,4-Dioxane is an environmental contaminant that has been shown to cause cancer in rodents after chronic high dose exposures. We reviewed and integrated information from recently published studies to update our understanding of the cancer mode of action of 1,4-dioxane. Tumor development in rodents from exposure to high doses of 1,4-dioxane is preceded by pre-neoplastic events including increased hepatic genomic signaling activity related to mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity. These events are followed by regenerative repair and proliferation and eventual development of tumors. Importantly, these events occur at doses that exceed the metabolic clearance of absorbed 1,4-dioxane in rats and mice resulting in elevated systemic levels of parent 1,4-dioxane. Consistent with previous reviews, we found no evidence of direct mutagenicity from exposure to 1,4-dioxane. We also found no evidence of CAR/PXR, AhR or PPARα activation resulting from exposure to 1,4-dioxane. This integrated assessment supports a cancer mode of action that is dependent on exceeding the metabolic clearance of absorbed 1,4-dioxane, direct mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity followed by sustained proliferation driven by regenerative repair and progression of heritable lesions to tumor development.
Asunto(s)
Neoplasias , Roedores , Ratas , Ratones , Animales , Citocromo P-450 CYP2E1 , Medición de RiesgoRESUMEN
The Steering Committee of the Alliance for Risk Assessment (ARA) opened a call for scientists interested in resolving what appeared to be a conundrum in estimating of the half-life of perfluorooctanoate (PFOA) in humans. An Advisory Committee was formed from nominations received and a subsequent invitation led to the development of three small independent working groups to review appropriate information and attempt a resolution. Initial findings were shared among these groups and a conclusion developed from the ensuing discussions. Many human observational studies have estimated the PFOA half-life. Most of these studies note the likely occurrence of unmonitored PFOA exposures, which could inflate values of the estimated PFOA half-life. Also, few of these studies estimated the half-life of PFOA isomers, the branched chains of which likely have shorter half-lives. This could deflate values of the estimated linear PFOA half-life. Fortunately, several studies informed both of these potential problems. The majority opinion of this international collaboration is that the studies striking the best balance in addressing some of these uncertainties indicate the likely central tendency of the human PFOA half-life is less than 2 years. The single best value appears to be the geometric mean (GM) of 1.3 years (Zhang et al., 2013, Table 3), based on a GM = 1.7 years in young females (n = 20) and GM = 1.2 years in males of all ages and older females (n = 66). However, a combined median value from Zhang et al. (2013) of 1.8 years also adds value to this range of central tendency. While the Collaboration found this study to be the least encumbered with unmonitored PFOA exposures and branched isomers, more studies of similar design would be valuable. Also valuable would be clarification around background exposures in other existing studies in case adjustments to half-life estimates are attempted.
Asunto(s)
Caprilatos , Fluorocarburos , Caprilatos/toxicidad , Femenino , Fluorocarburos/toxicidad , Semivida , Humanos , Masculino , Medición de RiesgoRESUMEN
The relative oral bioavailability and dermal absorption of chemical substances from environmental media are key factors that are needed to accurately estimate site-specific risks and manage human exposures. This study evaluated the in vivo relative oral bioavailability and in vitro dermal absorption of several polycyclic aromatic hydrocarbons (PAHs) found in soils collected from two formerly used Department of Defense sites impacted by weathered fragments of clay shooting targets. Concentrations of individual carcinogenic PAHs in the ≤250 µm fraction of soil ranged from approximately 0.1 to 100 mg/kg. A novel sample preparation method was developed to produce accurate and precise test diets for oral studies. The resulting test diets showed consistent concentrations of PAHs in soil- and soil-extract-amended diets and a consistent PAH concentration profile. Mean oral relative bioavailability factors (RBAFs) and dermal absorption fractions (ABSd) for benzo(a)pyrene ranged from 8 to 14% and 0.58 to 1.3%, respectively. Using the RBAF and ABSd values, measured here, for benzo(a)pyrene in USEPA's regional screening level equations yields concentrations for residential soils that are approximately eight times higher than those when default values are used (e.g., 9.6 vs 1.2 mg/kg at a target excess risk of 1 × 10-5).
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Disponibilidad Biológica , Arcilla , Monitoreo del Ambiente , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisisRESUMEN
In 2014, the United States Environmental Protection Agency (EPA) proposed a Dermal Slope Factor (DSF) for benzo[a]pyrene (BaP) of 0.006 (µg/day)-1 (USEPA 2014a). It would make cancer risk estimates associated with soil contact 100 times greater than those from soil ingestion and would predict that a large fraction of skin Basal Cell Carcinomas (BCCs) and Squamous Cell Carcinomas (SCCs) worldwide are caused by low level dermal exposures to PAHs, such as BaP. This is not logical given that sunlight (ultraviolet radiation (UV)) exposure is the generally recognized cause of BCCs and SCCs. This paper critically evaluates the proposed DSF. First, a reality check is performed using EPA standard risk assessment methods and comparing the results to actual BCC and SCC rates in the U.S. population. Then, the biological plausibility of the mechanism by which PAHs might cause human skin cancer is evaluated by exploring the generally recognized etiology of human skin cancer and comparing the genetic mutation signatures of rodent skin tumors caused by PAH exposures to those of human skin cancers. It is concluded that scientific flaws resulted in a proposed DSF value that greatly overestimates the skin cancer risk for humans dermally exposed to BaP in soil.
Asunto(s)
Benzo(a)pireno/toxicidad , Monitoreo del Ambiente/normas , Absorción Cutánea/efectos de los fármacos , Neoplasias Cutáneas/inducido químicamente , Contaminantes del Suelo/toxicidad , Benzo(a)pireno/administración & dosificación , Benzo(a)pireno/metabolismo , Monitoreo del Ambiente/métodos , Humanos , Reproducibilidad de los Resultados , Medición de Riesgo/métodos , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Absorción Cutánea/fisiología , Neoplasias Cutáneas/metabolismo , Contaminantes del Suelo/administración & dosificación , Contaminantes del Suelo/metabolismoRESUMEN
Risk assessment conclusions for a site may differ when using site-specific versus default values for the relative bioavailability factor (RBAF) and dermal absorption fraction (ABS.d), because these inputs affect both surface soil screening levels and risk/hazard estimates. Indeed, our case study demonstrates that different conclusions may be reached as to regulatory need for remedial action to protect human health when evaluating soil sampling data for seven carcinogenic polycyclic aromatic hydrocarbons (PAHs) using site-specific versus default TCEQ and USEPA residential soil screening levels. Use of site-specific RBAF and ABS.d values increased carcinogenicity-based TCEQ and USEPA surface soil screening levels for PAHs by 4.4- and 6-fold on average, respectively. Soil screening levels for PAHs were more sensitive to changes in ingestion exposure route parameters than to changes in dermal exposure route parameters. Accordingly, site-specific RBAF and ABS.d information has important implications for screening chemicals at PAH-impacted sites, and in addition provides more realistic estimates of risks/hazards posed by PAHs in soil with reduced uncertainty compared to estimates based on default RBAF and ABS.d values. Although default values are generally deemed acceptable by regulatory agencies, use of risk/hazard estimates based on these default values may compel insufficiently justified remedial action in some instances.
Asunto(s)
Arcilla/química , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Absorción Cutánea/efectos de los fármacos , Contaminantes del Suelo/farmacocinética , Suelo/química , Administración Oral , Disponibilidad Biológica , Humanos , Hidrocarburos Policíclicos Aromáticos/administración & dosificación , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Medición de Riesgo , Contaminantes del Suelo/administración & dosificación , Contaminantes del Suelo/efectos adversos , Propiedades de SuperficieRESUMEN
Previous work has shown that the weight of evidence supports the hypothesis that 1,4-dioxane causes liver tumors in rodents through cytotoxicity and subsequent regenerative hyperplasia. Questions regarding a lack of concordant findings for this mode of action (MOA) in mice have not been resolved, however. In the current work, a reanalysis of data from two chronic mouse cancer bioassays on 1,4-dioxane, one 13-week mouse study, seven rat cancer bioassays, coupled with other data such as 1,4-dioxane's negative mutagenicity, its lack of up-regulated DNA repair, and the appearance of liver tumors with a high background incidence, support the conclusion that rodent liver tumors, including those in mice, are evoked by a regenerative hyperplasia MOA. The initiating event for this MOA is metabolic saturation of 1,4-dioxane. Above metabolic saturation, higher doses of the parent compound cause an ever increasing toxicity in the rodent liver as evidenced by higher blood levels of enzymes indicative of liver cell damage and associated histopathology that occurs in a dose and time related manner. Importantly, alternative modes of action can be excluded. The observed liver toxicity has a threshold in the dose scale at or below levels that saturate metabolism, and generally in the range of 9.6-42 mg/kg-day for rats and 57 to 66 mg/kg-day for mice. It follows that threshold approaches to the assessment of this chemical's toxicity are supported by the non-mutagenic, metabolic saturation kinetics, and cytotoxicity-generated regenerative repair information available for 1,4-dioxane promoted rodent liver tumors.
Asunto(s)
Dioxanos/toxicidad , Neoplasias Hepáticas Experimentales/inducido químicamente , Hígado/efectos de los fármacos , Mutágenos/toxicidad , Animales , Hiperplasia/inducido químicamente , Hígado/patología , Neoplasias Hepáticas Experimentales/patología , Regeneración Hepática , Ratones , Ratas , Medición de Riesgo , Especificidad de la EspecieRESUMEN
A high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) method was developed for quantitative analysis of hydroxy polycyclic aromatic hydrocarbons (OH-PAHs). Four hydroxy metabolites of known and suspected carcinogenic PAHs (benzo[a]pyrene (B[a]P), benz[a]anthracene (B[a]A), and chrysene (CRY)) were selected as suitable biomarkers of PAH exposure and associated risks to human health. The analytical method included enzymatic deconjugation, liquid - liquid extraction, followed by derivatization with methyl-N-(trimethylsilyl) trifluoroacetamide and instrumental analysis. Photo-induced oxidation of target analytes - which has plagued previously published methods - was controlled by a combination of minimizing exposure to light, employing an antioxidant (2-mercaptoethanol) and utilizing a nitrogen atmosphere. Stability investigations also indicated that conjugated forms of the analytes are more stable than the non-conjugated forms. Accuracy and precision of the method were 77.4-101% (<4.9% RSD) in synthetic urine and 92.3-117% (<15% RSD) in human urine, respectively. Method detection limits, determined using eight replicates of low-level spiked human urine, ranged from 13 to 24pg/mL. The method was successfully applied for analysis of a pooled human urine sample and 78 mouse urine samples collected from mice fed with PAH-contaminated diets. In mouse urine, greater than 94% of each analyte was present in its conjugated form.
Asunto(s)
Biomarcadores/análisis , Carcinógenos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Animales , Humanos , RatonesRESUMEN
Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests that it could be easily adapted to predict contamination in other shellfish of concern.
Asunto(s)
Astacoidea/metabolismo , Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , OregonRESUMEN
The current work sought to develop predictive models between time-weighted average polycyclic aromatic hydrocarbon (PAH) concentrations in the freely dissolved phase and those present in resident aquatic organisms. We deployed semipermeable membrane passive sampling devices (SPMDs) and collected resident crayfish (Pacifastacus leniusculus) at nine locations within and outside of the Portland Harbor Superfund Mega-site in Portland, OR. Study results show that crayfish and aqueous phase samples collected within the Mega-site had PAH profiles enriched in high molecular weight PAHs and that freely dissolved PAH profiles tended to be more populated by low molecular weight PAHs compared to crayfish tissues. Results also show that of several modeling approaches, a two-factor partial least-squares (PLS) calibration model using detection limit substitution provided the best predictive power for estimating PAH concentrations in crayfish, where the model explained ≥72% of the variation in the data set and provided predictions within â¼3× of measured values. Importantly, PLS calibration provided a means to estimate PAH concentrations in tissues when concentrations were below detection in the freely dissolved phase. The impact of measurements below detection limits is discussed.
Asunto(s)
Astacoidea/química , Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Residuos Industriales , Análisis de los Mínimos Cuadrados , OregonRESUMEN
It is difficult to assess pollution in remote areas of less-developed regions owing to the limited availability of energy, equipment, technology, trained personnel and other key resources. Passive sampling devices (PSDs) are technologically simple analytical tools that sequester and concentrate bioavailable organic contaminants from the environment. Scientists from Oregon State University and the Centre Régional de Recherches en Ecotoxicologie et de Sécurité Environnementale (CERES) in Senegal developed a partnership to build capacity at CERES and to develop a pesticide-monitoring project using PSDs. This engagement resulted in the development of a dynamic training process applicable to capacity-building programmes. The project culminated in a field and laboratory study where paired PSD samples were simultaneously analysed in African and US laboratories with quality control evaluation and traceability. The joint study included sampling from 63 sites across six western African countries, generating a 9000 data point pesticide database with virtual access to all study participants.
Asunto(s)
Creación de Capacidad/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Plaguicidas/análisis , Plaguicidas/farmacocinética , Ríos , Manejo de Especímenes/instrumentación , Contaminantes Químicos del Agua/análisis , África Occidental , Disponibilidad Biológica , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas , Polietileno , Manejo de Especímenes/métodosRESUMEN
The authors investigated coupling passive sampling technologies with ultraviolet irradiation experiments to study polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH transformation processes in real-world bioavailable mixtures. Passive sampling device (PSD) extracts were obtained from coastal waters impacted by the Deepwater Horizon oil spill and Superfund sites in Portland, Oregon, USA. Oxygenated PAHs were found in the contaminated waters with our PSDs. All mixtures were subsequently exposed to a mild dose of ultraviolet B (UVB). A reduction in PAH levels and simultaneous formation of several oxygenated PAHs were measured. Site-specific differences were observed with UVB-exposed PSD mixtures.
Asunto(s)
Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/instrumentación , Golfo de México , Oregon , Oxígeno/química , Contaminación por Petróleo , Fotólisis , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/efectos de la radiación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiaciónRESUMEN
Although it is known that polycyclic aromatic hydrocarbons (PAHs) can be found in smoked meats, little is known about their prevalence in Native American smoked fish. In this work, the effect of traditional Native American fish smoking methods on dietary exposure to PAHs and possible risks to human health has been assessed. Smoking methods considered smoking structure (tipi or shed) and wood type (apple or alder). Neither smoking structure nor wood type accounted for differences in smoked salmon content of 33 PAHs. Carcinogenic and noncarcinogenic PAH loads in traditionally smoked salmon were 40-430 times higher than those measured in commercial products. Dietary exposure to PAHs could result in excess lifetime cancer risks between 1 × 10(-5) and 1 × 10(-4) at a daily consumption rate of 5 g d(-1) and could approach 1 × 10(-2) at 300 g d(-1). Hazard indexes approached 0.005 at 5 g d(-1), or approximately 0.3 at 300 g d(-1). Levels of PAHs present in smoked salmon prepared using traditional Native American methods may pose elevated cancer risks if consumed at high consumption rates over many years.
Asunto(s)
Culinaria/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Alimentos Marinos/análisis , Animales , Carcinógenos/análisis , Contaminación de Alimentos , Salud , Humanos , Indígenas Norteamericanos , SalmónRESUMEN
A fast and easy modified QuEChERS (quick, easy, cheap, rugged and safe) extraction method has been developed and validated for determination of 33 parent and substituted polycyclic aromatic hydrocarbons (PAHs) in high-fat smoked salmon that greatly enhances analyte recovery compared to traditional QuEChERS procedures. Sample processing includes extraction of PAHs into a solution of ethyl acetate, acetone and isooctane followed by cleanup with dispersive SPE and analysis by GC-MS in SIM mode. Method performance was assessed in spike recovery experiments (500 µg/g wet weight) in three commercially available smoked salmon with 3-11% fat. Recoveries of some 2-, 3- and 5-ring PAHs were improved 50-200% over traditional methods, while average recovery across all PAHs was improved 67%. Method precision was good with replicate extractions typically yielding relative standard deviations <10%, and detection limits were in the low ng/g range. With this method, a single analyst could extract and clean up ≥60 samples for PAH analysis in an 8 h work day.