Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 37(6): 109972, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758304

RESUMEN

Cortical function relies on the balanced activation of excitatory and inhibitory neurons. However, little is known about the organization and dynamics of shaft excitatory synapses onto cortical inhibitory interneurons. Here, we use the excitatory postsynaptic marker PSD-95, fluorescently labeled at endogenous levels, as a proxy for excitatory synapses onto layer 2/3 pyramidal neurons and parvalbumin-positive (PV+) interneurons in the barrel cortex of adult mice. Longitudinal in vivo imaging under baseline conditions reveals that, although synaptic weights in both neuronal types are log-normally distributed, synapses onto PV+ neurons are less heterogeneous and more stable. Markov model analyses suggest that the synaptic weight distribution is set intrinsically by ongoing cell-type-specific dynamics, and substantial changes are due to accumulated gradual changes. Synaptic weight dynamics are multiplicative, i.e., changes scale with weights, although PV+ synapses also exhibit an additive component. These results reveal that cell-type-specific processes govern cortical synaptic strengths and dynamics.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Interneuronas/fisiología , Inhibición Neural , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal
2.
J Biol Chem ; 295(50): 17281-17297, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33037073

RESUMEN

The adipocyte-derived hormone leptin increases trafficking of KATP and Kv2.1 channels to the pancreatic ß-cell surface, resulting in membrane hyperpolarization and suppression of insulin secretion. We have previously shown that this effect of leptin is mediated by the NMDA subtype of glutamate receptors (NMDARs). It does so by potentiating NMDAR activity, thus enhancing Ca2+ influx and the ensuing downstream signaling events that drive channel trafficking to the cell surface. However, the molecular mechanism by which leptin potentiates NMDARs in ß-cells remains unknown. Here, we report that leptin augments NMDAR function via Src kinase-mediated phosphorylation of the GluN2A subunit. Leptin-induced membrane hyperpolarization diminished upon pharmacological inhibition of GluN2A but not GluN2B, indicating involvement of GluN2A-containing NMDARs. GluN2A harbors tyrosine residues that, when phosphorylated by Src family kinases, potentiate NMDAR activity. We found that leptin increases phosphorylation of Tyr-418 in Src, an indicator of kinase activation. Pharmacological inhibition of Src or overexpression of a kinase-dead Src mutant prevented the effect of leptin, whereas a Src kinase activator peptide mimicked it. Using mutant GluN2A overexpression, we show that Tyr-1292 and Tyr-1387 but not Tyr-1325 are responsible for the effect of leptin. Importantly, ß-cells from db/db mice, a type 2 diabetes mouse model lacking functional leptin receptors, or from obese diabetic human donors failed to respond to leptin but hyperpolarized in response to NMDA. Our study reveals a signaling pathway wherein leptin modulates NMDARs via Src to regulate ß-cell excitability and suggests NMDARs as a potential target to overcome leptin resistance.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Leptina/metabolismo , Potenciales de la Membrana , Receptores de N-Metil-D-Aspartato/metabolismo , Familia-src Quinasas/metabolismo , Animales , Línea Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Leptina/genética , Ratones , Ratones Mutantes , Mutación , Obesidad/genética , Obesidad/metabolismo , Fosforilación , Receptores de N-Metil-D-Aspartato/genética , Familia-src Quinasas/genética
3.
J Biol Chem ; 292(37): 15512-15524, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768770

RESUMEN

NMDA receptors (NMDARs) are Ca2+-permeant, ligand-gated ion channels activated by the excitatory neurotransmitter glutamate and have well-characterized roles in the nervous system. The expression and function of NMDARs in pancreatic ß-cells, by contrast, are poorly understood. Here, we report a novel function of NMDARs in ß-cells. Using a combination of biochemistry, electrophysiology, and imaging techniques, we now show that NMDARs have a key role in mediating the effect of leptin to modulate ß-cell electrical activity by promoting AMP-activated protein kinase (AMPK)-dependent trafficking of KATP and Kv2.1 channels to the plasma membrane. Blocking NMDAR activity inhibited the ability of leptin to activate AMPK, induce KATP and Kv2.1 channel trafficking, and promote membrane hyperpolarization. Conversely, activation of NMDARs mimicked the effect of leptin, causing Ca2+ influx, AMPK activation, and increased trafficking of KATP and Kv2.1 channels to the plasma membrane, and triggered membrane hyperpolarization. Moreover, leptin potentiated NMDAR currents and triggered NMDAR-dependent Ca2+ influx. Importantly, NMDAR-mediated signaling was observed in rat insulinoma 832/13 cells and in human ß-cells, indicating that this pathway is conserved across species. The ability of NMDARs to regulate potassium channel surface expression and thus, ß-cell excitability provides mechanistic insight into the recently reported insulinotropic effects of NMDAR antagonists and therefore highlights the therapeutic potential of these drugs in managing type 2 diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Canales KATP/metabolismo , Leptina/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Canales de Potasio Shab/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Adulto , Animales , Biotinilación , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Ligandos , Moduladores del Transporte de Membrana/farmacología , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Propiedades de Superficie
4.
Cell Rep ; 19(3): 617-629, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423323

RESUMEN

Protein kinase A (PKA) has diverse functions in neurons. At rest, the subcellular localization of PKA is controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA upon activation remain poorly understood. Here, we report that elevation of cyclic AMP (cAMP) in neuronal dendrites causes a significant percentage of the PKA catalytic subunit (PKA-C) molecules to be released from the regulatory subunit (PKA-R). Liberated PKA-C becomes associated with the membrane via N-terminal myristoylation. This membrane association does not require the interaction between PKA-R and AKAPs. It slows the mobility of PKA-C and enriches kinase activity on the membrane. Membrane-residing PKA substrates are preferentially phosphorylated compared to cytosolic substrates. Finally, the myristoylation of PKA-C is critical for normal synaptic function and plasticity. We propose that activation-dependent association of PKA-C renders the membrane a unique PKA-signaling compartment. Constrained mobility of PKA-C may synergize with AKAP anchoring to determine specific PKA function in neurons.


Asunto(s)
Membrana Celular/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Ácido Mirístico/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Citosol/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Plasticidad Neuronal , Neuronas/metabolismo , Fosforilación , Unión Proteica , Ratas , Especificidad por Sustrato , Sinapsis/metabolismo
5.
J Neurosci ; 34(50): 16698-712, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25505322

RESUMEN

Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo.


Asunto(s)
Colorantes Fluorescentes/análisis , Guanilato-Quinasas/análisis , Proteínas de la Membrana/análisis , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Región CA1 Hipocampal/química , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Espinas Dendríticas/química , Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large , Colorantes Fluorescentes/metabolismo , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
6.
J Neurosci ; 32(24): 8127-37, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22699894

RESUMEN

Glutamatergic synapses in early postnatal development transiently express calcium-permeable AMPA receptors (CP-AMPARs). Although these GluA2-lacking receptors are essential and are elevated in response to brain-derived neurotrophic factor (BDNF), little is known regarding molecular mechanisms that govern their expression and synaptic insertion. Here we show that BDNF-induced GluA1 translation in rat primary hippocampal neurons requires the activation of mammalian target of rapamycin (mTOR) via calcium calmodulin-dependent protein kinase kinase (CaMKK). Specifically, BDNF-mediated phosphorylation of threonine 308 (T308) in AKT, a known substrate of CaMKK and an upstream activator of mTOR-dependent translation, was prevented by (1) pharmacological inhibition of CaMKK with STO-609, (2) overexpression of a dominant-negative CaMKK, or (3) short hairpin-mediated knockdown of CaMKK. GluA1 surface expression induced by BDNF, as assessed by immunocytochemistry using an extracellular N-terminal GluA1 antibody or by surface biotinylation, was impaired following knockdown of CaMKK or treatment with STO-609. Activation of CaMKK by BDNF requires transient receptor potential canonical (TRPC) channels as SKF-96365, but not the NMDA receptor antagonist d-APV, prevented BDNF-induced GluA1 surface expression as well as phosphorylation of CaMKI, AKT(T308), and mTOR. Using siRNA we confirmed the involvement of TRPC5 and TRPC6 subunits in BDNF-induced AKT(T308) phosphorylation. The BDNF-induced increase in mEPSC was blocked by IEM-1460, a selected antagonist of CP-AMPARs, as well as by the specific repression of acute GluA1 translation via siRNA to GluA1 but not GluA2. Together these data support the conclusion that newly synthesized GluA1 subunits, induced by BDNF, are readily incorporated into synapses where they enhance the expression of CP-AMPARs and synaptic strength.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Receptores AMPA/metabolismo , Canales Catiónicos TRPC/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Adamantano/análogos & derivados , Adamantano/farmacología , Animales , Bencimidazoles/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Técnicas de Silenciamiento del Gen , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiología , Imidazoles/farmacología , Masculino , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Naftalimidas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Cultivo Primario de Células , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPC/genética
7.
J Neurosci ; 32(16): 5620-30, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22514323

RESUMEN

Ca²âº/calmodulin-dependent kinases (CaMKs) are essential for neuronal development and plasticity, processes requiring de novo protein synthesis. Roles for CaMKs in modulating gene transcription are well established, but their involvement in mRNA translation is evolving. Here we report that activity-dependent translational initiation in cultured rat hippocampal neurons is enhanced by CaMKI-mediated phosphorylation of Ser1156 in eukaryotic initiation factor eIF4GII (4GII). Treatment with bicuculline or gabazine to enhance neuronal activity promotes recruitment of wild-type 4GII, but not the 4GII S1156A mutant or 4GI, to the heterotrimeric eIF4F (4F) complex that assembles at the 5' cap structure (m7GTP) of mRNA to initiate ribosomal scanning. Recruitment of 4GII to 4F is suppressed by pharmacological inhibition (STO-609) of CaM kinase kinase, the upstream activator of CaMKI. Post hoc in vitro CaMKI phosphorylation assays confirm that activity promotes phosphorylation of S1156 in transfected 4GII in neurons. Changes in cap-dependent and cap-independent translation were assessed using a bicistronic luciferase reporter transfected into neurons. Activity upregulates cap-dependent translation, and RNAi knockdown of CaMKIß and γ isoforms, but not α or δ, led to its attenuation as did blockade of NMDA receptors. Furthermore, RNAi knockdown of 4GII attenuates cap-dependent translation and reduces density of dendritic filopodia and spine formation without effect on dendritic arborization. Together, our results provide a mechanistic link between Ca²âº influx due to neuronal activity and regulation of cap-dependent RNA translation via CaMKI activation and selective recruitment of phosphorylated 4GII to the 4F complex, which may function to regulate activity-dependent changes in spine density.


Asunto(s)
Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Neuronas/fisiología , ARN Mensajero/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bicuculina/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Quelantes/farmacología , Dendritas/genética , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Embrión de Mamíferos , Factor 4G Eucariótico de Iniciación/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Humanos , Inmunoprecipitación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Mutación/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Isótopos de Fósforo/farmacocinética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Piridazinas/farmacología , Caperuzas de ARN/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Serina/genética , Bloqueadores de los Canales de Sodio/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Tetrodotoxina/farmacología , Transfección/métodos
8.
Neuroscientist ; 18(4): 326-41, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21670426

RESUMEN

The majority of excitatory synaptic input in the brain is received by small bulbous actin-rich protrusions residing on the dendrites of glutamatergic neurons. These dendritic spines are the major sites of information processing in the brain. This conclusion is reinforced by the observation that many higher cognitive disorders, such as mental retardation, Rett syndrome, and autism, are associated with aberrant spine morphology. Mechanisms that regulate the maturation and plasticity of dendritic spines are therefore fundamental to understanding higher brain functions including learning and memory. It is well known that activity-driven changes in synaptic efficacy modulate spine morphology due to alterations in the underlying actin cytoskeleton. Recent studies have elucidated numerous molecular regulators that directly alter actin dynamics within dendritic spines. This review will emphasize activity-dependent changes in spine morphology and highlight likely roles of these actin-binding proteins.


Asunto(s)
Espinas Dendríticas/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/citología , Sinapsis/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Cadherinas/metabolismo , Calcio/metabolismo , MicroARNs/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , N-Metilaspartato/metabolismo , Receptores AMPA/metabolismo
9.
J Neurosci ; 30(35): 11565-75, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20810878

RESUMEN

It is well established that long-term potentiation (LTP), a paradigm for learning and memory, results in a stable enlargement of potentiated spines associated with recruitment of additional GluA1-containing AMPA receptors (AMPARs). Although regulation of the actin cytoskeleton is involved, the detailed signaling mechanisms responsible for this spine expansion are unclear. Here, we used cultured mature hippocampal neurons stimulated with a glycine-induced, synapse-specific form of chemical LTP (GI-LTP). We report that the stable structural plasticity (i.e., spine head enlargement and spine length shortening) that accompanies GI-LTP was blocked by inhibitors of NMDA receptors (NMDARs; APV) or CaM-kinase kinase (STO-609), the upstream activator of CaM-kinase I (CaMKI), as well as by transfection with dominant-negative (dn) CaMKI but not dnCaMKIV. Recruitment of GluA1 to the spine surface occurred after GI-LTP and was mimicked by transfection with constitutively active CaMKI. Spine enlargement induced by transfection of GluA1 was associated with synaptic recruitment of Ca(2+)-permeable AMPARs (CP-AMPARs) as assessed by an increase in the rectification index of miniature EPSCs (mEPSCs) and their sensitivity to IEM-1460, a selective antagonist of CP-AMPARs. Furthermore, the increase in spine size and mEPSC amplitude resulting from GI-LTP itself was blocked by IEM-1460, demonstrating involvement of CP-AMPARs. Downstream signaling effectors of CP-AMPARs, identified by suppression of their activation by IEM-1460, included the Rac/PAK/LIM-kinase pathway that regulates spine actin dynamics. Together, our results suggest that synaptic recruitment of CP-AMPARs via CaMKI may provide a mechanistic link between NMDAR activation in LTP and regulation of a signaling pathway that drives spine enlargement via actin polymerization.


Asunto(s)
Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/fisiología , Calcio/metabolismo , Espinas Dendríticas/fisiología , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/enzimología , Animales , Animales Recién Nacidos , Cationes Bivalentes/metabolismo , Aumento de la Célula , Permeabilidad de la Membrana Celular/fisiología , Células Cultivadas , Plasticidad Neuronal/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
10.
Curr Opin Neurobiol ; 20(1): 108-15, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19896363

RESUMEN

Formation of the human brain during embryonic and postnatal development is an extraordinarily complex process resulting at maturity in billions of neurons with trillions of specialized connections called synapses. These synapses, composed of a varicosity or bouton from a presynaptic neuron that communicates with a dendritic spine of the postsynaptic neuron, comprise the neural network that is essential for complex behavioral phenomena and cognition. Inappropriate synapse formation or structure is thought to underlie several developmental neuropathologies. Even in the mature CNS, alterations in synapse structure and function continues to be a very dynamic process that is foundational to learning and memory as well as other adaptive abilities of the brain. This synaptic plasticity in mature neurons, which is often triggered by certain patterns of neural activity, is again multifaceted and involves post-translational modifications (e.g. phosphorylation) and subcellular relocalization or trafficking (endocytosis/exocytosis) of existing synaptic proteins, initiation of protein synthesis from existing mRNAs localized in dendrites or spines, and triggering of new gene transcription in the nucleus. These various cellular processes support varying temporal components of synaptic plasticity that begin within 1-2 min but can persist for hours to days. This review will give a critical assessment of activity-dependent molecular modulations of synapses reported over the past couple years. Owing to space limitations, it will focus on mammalian excitatory (i.e. glutamatergic) synapses and will not consider several activity-independent signaling pathways (e.g. ephrinB receptor) that also modulate spine and synapse formation.


Asunto(s)
Espinas Dendríticas/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Humanos , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología
11.
J Neurosci ; 29(31): 9794-808, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19657032

RESUMEN

Functionality of neurons is dependent on their compartmentalized polarization of dendrites and an axon. The rapid and selective outgrowth of one neurite, relative to the others, to form the axon is critical in initiating neuronal polarity. Axonogenesis is regulated in part by an optimal intracellular calcium concentration. Our investigation of Ca(2+)-signaling pathways involved in axon formation using cultured hippocampal neurons demonstrates a role for Ca(2+)/calmodulin kinase kinase (CaMKK) and its downstream target Ca(2+)/calmodulin kinase I (CaMKI). Expression of constitutively active CaMKI induced formation of multiple axons, whereas blocking CaMKK or CaMKI activity with pharmacological, dominant-negative, or short hairpin RNA (shRNA) methods significantly inhibited axon formation. CaMKK signals via the gamma-isoform of CaMKI as shRNA to CaMKIgamma, but not the other CaMKI isoforms, inhibited axon formation. Furthermore, overexpression of wild-type CaMKIgamma, but not a mutant incapable of membrane association, accelerated the rate of axon formation. Pharmacological or small interfering RNA inhibition of transient receptor potential canonical 5 (TRPC5) channels, which are present in developing axonal growth cones, suppressed CaMKK-mediated activation of CaMKIgamma as well as axon formation. We demonstrate using biochemical fractionation and immunocytochemistry that CaMKIgamma and TRPC5 colocalize to lipid rafts. These results are consistent with a model in which highly localized calcium influx through the TRPC5 channels activates CaMKK and CaMKIgamma, which subsequently promote axon formation.


Asunto(s)
Axones/fisiología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Canales Catiónicos TRPC/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Membrana Celular/metabolismo , Células Cultivadas , Microdominios de Membrana/metabolismo , Mutación , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Neuritas/fisiología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Ratas , Canales Catiónicos TRPC/genética
12.
Cereb Cortex ; 17(1): 163-74, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16467564

RESUMEN

Endocannabinoids are emerging as potent modulators of neuronal activity throughout the brain, and activation of the type-1 cannabinoid receptor (CB1R) reduces sensory-evoked cortical responses in vivo, presumably by decreasing excitatory transmission. In the neocortex, CB1R is differentially expressed across neocortical laminae, with highest levels of expression in layers 2/3 and 5. Although we have shown that cannabinoid signaling in layer 2/3 of somatosensory cortex targets both gamma-aminobutyric acid (GABA) and glutamate release, the predominant effect is a net increase in pyramidal neuron (PN) activity due to disinhibition. The role of endocannabinoid signaling in layer 5, the main output layer of the neocortex, remains unknown. We found that inducing activity in layer 5 PNs resulted in endocannabinoid-mediated depolarization-induced suppression of excitation (DSE), whereas the majority of inhibitory inputs were cannabinoid insensitive. Furthermore, in contrast to layer 2/3, the net effect of elevations in action potential firing of layer 5 PNs was an endocannabinoid-mediated decrease in PN spike probability. Interestingly, excitatory synaptic currents in layer 5 evoked by intralaminar stimulation were cannabinoid sensitive, whereas inputs evoked from layer 2/3 were insensitive, suggesting specificity of cannabinoid signaling across glutamatergic inputs. Thus, cannabinoids have differential effects on excitation and inhibition across cortical layers, and endocannabinoid signaling in layer 5 may serve to selectively decrease the efficacy of a subset of excitatory inputs.


Asunto(s)
Moduladores de Receptores de Cannabinoides/farmacología , Endocannabinoides , Glutamatos/fisiología , Células Piramidales/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología , Animales , Benzoxazinas , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Interpretación Estadística de Datos , Electrofisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ratones , Morfolinas/farmacología , Naftalenos/farmacología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Receptor Cannabinoide CB1/biosíntesis , Receptor Cannabinoide CB1/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
13.
J Neurophysiol ; 92(4): 2105-12, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15175370

RESUMEN

Depolarization-induced suppression of inhibition (DSI) is a form of retrograde signaling at GABAergic synapses that is initiated by the calcium- and depolarization-dependent release of endocannabinoids from postsynaptic neurons. In the neocortex, pyramidal neurons (PNs) appear to use DSI as a mechanism for regulating somatic inhibition from a subpopulation of GABAergic inputs that express the type 1 cannabinoid receptor. Although postsynaptic control of afferent inhibition may directly influence the integrative properties of neocortical PNs, little is known about the patterns of activity that evoke endocannabinoid release and the impact such disinhibition may have on the excitability of PNs. Here we provide the first systematic survey of action potential (AP)-induced DSI in the neocortex. The magnitude and time course of DSI was directly related to the number and frequency of postsynaptic APs with significant suppression induced by a 20-Hz train containing as few as three APs. This AP-induced DSI was mediated by endocannabinoids as it was prevented by the cannabinoid receptor antagonist AM251 and potentiated by the endocannabinoid transport inhibitor AM404. We also explored the effects of endocannabinoid-mediated DSI on PN excitability. We found that single AP trains markedly increased PN responsiveness to excitatory synaptic inputs and promoted AP discharge by suppressing GABAergic inhibition. The time course of this effect paralleled DSI expression and was completely blocked by AM251. Taken together, our data suggest a role for endocannabinoids in regulating the output of cortical PNs.


Asunto(s)
Potenciales de Acción/fisiología , Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Células Piramidales/fisiología , Animales , Benzoxazinas , Carbacol/farmacología , Estimulación Eléctrica , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Cinética , Ratones , Microscopía por Video , Morfolinas/farmacología , Naftalenos/farmacología , Neocórtex/fisiología , Agonistas Nicotínicos/farmacología , Sistema Nervioso Parasimpático/fisiología , Receptores de Cannabinoides/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/fisiología
14.
J Physiol ; 556(Pt 1): 95-107, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-14742727

RESUMEN

Retrograde synaptic signalling has long been recognized as a fundamental feature of neural systems. However, the cellular specificity and functional consequences of fast retrograde communication are not well understood. We have focused our efforts on understanding the role that endocannabinoids play in regulating synaptic inhibition in sensory neocortex. Recent studies have implicated endocannabinoids as the retrograde signalling molecules that underlie depolarization-induced suppression of inhibition, or DSI. This short-term form of presynaptic depression is triggered by postsynaptic depolarization and is likely to play an important role in information processing. In the present study we investigated the cellular and synaptic specificity of endocannabinoid signalling in sensory cortex using whole-cell recordings from layer 2/3 pyramidal neurones (PNs) in acute brain slices. We report that GABAergic interneurones that are depolarized by muscarinic receptor stimulation provided the majority of DSI-susceptible inputs to neocortical PNs. This subclass of interneurones generated large, fast postsynaptic currents in PNs which were transiently suppressed by either postsynaptic depolarization or a brief train of action potentials. Neocortical DSI required activation of the type 1 cannabinoid receptor (CB1R) but not metabotropic glutamate or GABA receptors. Using focal drug application, we found that the DSI-susceptible afferents preferentially synapse on the perisomatic membrane of PNs, and not on the apical dendrites. Together, these results suggest that endocannabinoid-mediated DSI in the cortex can transiently and selectively depress a subclass of PN inputs. Although the physiological implications remain to be explored, this suppression of somatic inhibition may alter the excitability of principal neurones and thereby modulate cortical output.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Neocórtex/fisiología , Inhibición Neural/fisiología , Células Piramidales/fisiología , Transducción de Señal/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Electrofisiología , Técnicas In Vitro , Ratones , Neocórtex/citología , Técnicas de Placa-Clamp , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...