Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Brain ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38938188

RESUMEN

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

2.
Cancer Res Commun ; 3(8): 1594-1606, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37599786

RESUMEN

Despite recent therapeutic advances, the 5-year survival rate for adults with acute myeloid leukemia (AML) is poor and standard-of-care chemotherapy is associated with significant toxicity, highlighting the need for new therapeutic approaches. Recent work from our group and others established that the G protein-coupled estrogen receptor (GPER) is tumor suppressive in melanoma and other solid tumors. We performed a preliminary screen of human cancer cell lines from multiple malignancies and found that LNS8801, a synthetic pharmacologic agonist of GPER currently in early phase clinical trials, promoted apoptosis in human AML cells. Using human AML cell lines and primary cells, we show that LNS8801 inhibits human AML in preclinical in vitro models, while not affecting normal mononuclear cells. Although GPER is broadly expressed in normal and malignant myeloid cells, this cancer-specific LNS8801-induced inhibition appeared to be independent of GPER signaling. LNS8801 induced AML cell death primarily through a caspase-dependent apoptosis pathway. This was independent of secreted classical death receptor ligands, and instead required induction of reactive oxygen species (ROS) and activation of endoplasmic reticulum (ER) stress response pathways including IRE1α. These studies demonstrate a novel activity of LNS8801 in AML cells and show that targeting ER stress with LNS8801 may be a useful therapeutic approach for AML. Significance: Previous work demonstrated that LNS8801 inhibits cancer via GPER activation, especially in solid tumors. Here we show that LNS8801 inhibits AML via GPER-independent mechanisms that include ROS induction and ER activation.


Asunto(s)
Endorribonucleasas , Leucemia Mieloide Aguda , Adulto , Humanos , Especies Reactivas de Oxígeno , Proteínas Serina-Treonina Quinasas , Leucemia Mieloide Aguda/tratamiento farmacológico , Estrógenos , Estrés del Retículo Endoplásmico
3.
Front Cell Dev Biol ; 11: 1082213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363724

RESUMEN

Introduction: The mitochondrial uniporter (MCU) Ca2+ ion channel represents the primary means for Ca2+ uptake by mitochondria. Mitochondrial matrix Ca2+ plays critical roles in mitochondrial bioenergetics by impinging upon respiration, energy production and flux of biochemical intermediates through the TCA cycle. Inhibition of MCU in oncogenic cell lines results in an energetic crisis and reduced cell proliferation unless media is supplemented with nucleosides, pyruvate or α-KG. Nevertheless, the roles of MCU-mediated Ca2+ influx in cancer cells remain unclear, in part because of a lack of genetic models. Methods: MCU was genetically deleted in transformed murine fibroblasts for study in vitro and in vivo. Tumor formation and growth were studied in murine xenograft models. Proliferation, cell invasion, spheroid formation and cell cycle progression were measured in vitro. The effects of MCU deletion on survival and cell-death were determined by probing for live/death markers. Mitochondrial bioenergetics were studied by measuring mitochondrial matrix Ca2+ concentration, membrane potential, global dehydrogenase activity, respiration, ROS production and inactivating-phosphorylation of pyruvate dehydrogenase. The effects of MCU rescue on metabolism were examined by tracing of glucose and glutamine utilization for fueling of mitochondrial respiration. Results: Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced MCU-mediated Ca2+ uptake, altered mitochondrial matrix Ca2+ concentration responses to agonist stimulation, suppression of inactivating-phosphorylation of pyruvate dehydrogenase and a modest increase of mitochondrial respiration. Genetic MCU deletion inhibited growth of HEK293T cells and transformed fibroblasts in mouse xenograft models, associated with reduced proliferation and delayed cell-cycle progression. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro, both predictors of metastatic potential. Surprisingly, mitochondrial matrix [Ca2+], membrane potential, global dehydrogenase activity, respiration and ROS production were unaffected. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca2+ signals. Conclusion: Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on MCU for cell metabolism and Ca2+ dynamics necessary for cell-cycle progression and cell proliferation.

4.
Am J Physiol Cell Physiol ; 325(1): C155-C171, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37273235

RESUMEN

Temperature strongly influences the intensity of taste, but it remains understudied despite its physiological, hedonic, and commercial implications. The relative roles of the peripheral gustatory and somatosensory systems innervating the oral cavity in mediating thermal effects on taste sensation and perception are poorly understood. Type II taste-bud cells, responsible for sensing sweet, bitter umami, and appetitive NaCl, release neurotransmitters to gustatory neurons by the generation of action potentials, but the effects of temperature on action potentials and the underlying voltage-gated conductances are unknown. Here, we used patch-clamp electrophysiology to explore the effects of temperature on acutely isolated type II taste-bud cell electrical excitability and whole cell conductances. Our data reveal that temperature strongly affects action potential generation, properties, and frequency and suggest that thermal sensitivities of underlying voltage-gated Na+ and K+ channel conductances provide a mechanism for how and whether voltage-gated Na+ and K+ channels in the peripheral gustatory system contribute to the influence of temperature on taste sensitivity and perception.NEW & NOTEWORTHY The temperature of food affects how it tastes. Nevertheless, the mechanisms involved are not well understood, particularly whether the physiology of taste-bud cells in the mouth is involved. Here we show that the electrical activity of type II taste-bud cells that sense sweet, bitter, and umami substances is strongly influenced by temperature. These results suggest a mechanism for the influence of temperature on the intensity of taste perception that resides in taste buds themselves.


Asunto(s)
Papilas Gustativas , Papilas Gustativas/metabolismo , Gusto/fisiología , Potenciales de Acción , Temperatura , Neuronas
5.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37163088

RESUMEN

The mitochondrial uniporter (MCU) Ca 2+ ion channel represents the primary means for Ca 2+ uptake into mitochondria. Here we employed in vitro and in vivo models with MCU genetically eliminated to understand how MCU contributes to tumor formation and progression. Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced mitochondrial Ca 2+ uptake, suppression of inactivating-phosphorylation of pyruvate dehydrogenase, a modest increase of basal mitochondrial respiration and a significant increase of acute Ca 2+ -dependent stimulation of mitochondrial respiration. Inhibition of mitochondrial Ca 2+ uptake by genetic deletion of MCU markedly inhibited growth of HEK293T cells and of transformed fibroblasts in mouse xenograft models. Reduced tumor growth was primarily a result of substantially reduced proliferation and fewer mitotic cells in vivo , and slower cell proliferation in vitro associated with delayed progression through S-phase of the cell cycle. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro , both predictors of metastatic potential. Surprisingly, mitochondrial matrix Ca 2+ concentration, membrane potential, global dehydrogenase activity, respiration and ROS production were unchanged by genetic deletion of MCU in transformed cells. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca 2+ signals. Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on mitochondrial Ca 2+ uptake for cell metabolism and Ca 2+ dynamics necessary for cell-cycle progression and cell proliferation.

6.
EMBO J ; 42(7): e111450, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36861806

RESUMEN

Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.


Asunto(s)
Infecciones Bacterianas , Sinapsis Inmunológicas , Ratones , Animales , Canales Iónicos/metabolismo , Células Asesinas Naturales , Infecciones Bacterianas/metabolismo , Adenosina Trifosfato/metabolismo , Mamíferos
7.
Cell Calcium ; 110: 102697, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736164

RESUMEN

Ca2+ is a major ligand of the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+-release channel. Fan et al. [1] recently solved additional cryo-electron microscopy (cryo-EM) structures of the IP3R in different ligand-binding states, revealing new Ca2+ binding sites.


Asunto(s)
Calcio , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microscopía por Crioelectrón , Ligandos , Inositol 1,4,5-Trifosfato/metabolismo , Sitios de Unión , Calcio/metabolismo
8.
Cancer Res ; 81(23): 5991-6003, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706862

RESUMEN

Melanoma and most other cancers occur more frequently and have worse prognosis in males compared with females. Although sex steroids are thought to be involved, classical androgen and estrogen receptors are not detectable in most melanomas. Here we show that testosterone promotes melanoma proliferation by activating ZIP9 (SLC39A9), a zinc transporter that is widely expressed in human melanoma but not intentionally targeted by available therapeutics. This testosterone activity required an influx of zinc, activation of MAPK, and nuclear translocation of YAP. FDA-approved inhibitors of the classical androgen receptor also inhibited ZIP9, thereby antagonizing the protumorigenic effects of testosterone in melanoma. In male mice, androgen receptor inhibitors suppressed growth of ZIP9-expressing melanomas but had no effect on isogenic melanomas lacking ZIP9 or on melanomas in females. These data suggest that ZIP9 might be effectively targeted in melanoma and other cancers by repurposing androgen receptor inhibitors that are currently approved only for prostate cancer. SIGNIFICANCE: Testosterone signaling through ZIP9 mediates some of the sex differences in melanoma, and drugs that target AR can be repurposed to block ZIP9 and inhibit melanoma in males.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Proteínas de Transporte de Catión/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Receptores Androgénicos/química , Testosterona/farmacología , Andrógenos/farmacología , Animales , Apoptosis , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Movimiento Celular , Proliferación Celular , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Factores Sexuales , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
EMBO Rep ; 22(9): e51872, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34324787

RESUMEN

Epithelial plasticity, or epithelial-to-mesenchymal transition (EMT), is a well-recognized form of cellular plasticity, which endows tumor cells with invasive properties and alters their sensitivity to various agents, thus representing a major challenge to cancer therapy. It is increasingly accepted that carcinoma cells exist along a continuum of hybrid epithelial-mesenchymal (E-M) states and that cells exhibiting such partial EMT (P-EMT) states have greater metastatic competence than those characterized by either extreme (E or M). We described recently a P-EMT program operating in vivo by which carcinoma cells lose their epithelial state through post-translational programs. Here, we investigate the underlying mechanisms and report that prolonged calcium signaling induces a P-EMT characterized by the internalization of membrane-associated E-cadherin (ECAD) and other epithelial proteins as well as an increase in cellular migration and invasion. Signaling through Gαq-associated G-protein-coupled receptors (GPCRs) recapitulates these effects, which operate through the downstream activation of calmodulin-Camk2b signaling. These results implicate calcium signaling as a trigger for the acquisition of hybrid/partial epithelial-mesenchymal states in carcinoma cells.


Asunto(s)
Señalización del Calcio , Transición Epitelial-Mesenquimal , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Plasticidad de la Célula
10.
Pflugers Arch ; 473(1): 3-13, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936320

RESUMEN

The variety of taste sensations, including sweet, umami, bitter, sour, and salty, arises from diverse taste cells, each of which expresses specific taste sensor molecules and associated components for downstream signal transduction cascades. Recent years have witnessed major advances in our understanding of the molecular mechanisms underlying transduction of basic tastes in taste buds, including the identification of the bona fide sour sensor H+ channel OTOP1, and elucidation of transduction of the amiloride-sensitive component of salty taste (the taste of sodium) and the TAS1R-independent component of sweet taste (the taste of sugar). Studies have also discovered an unconventional chemical synapse termed "channel synapse" which employs an action potential-activated CALHM1/3 ion channel instead of exocytosis of synaptic vesicles as the conduit for neurotransmitter release that links taste cells to afferent neurons. New images of the channel synapse and determinations of the structures of CALHM channels have provided structural and functional insights into this unique synapse. In this review, we discuss the current view of taste transduction and neurotransmission with emphasis on recent advances in the field.


Asunto(s)
Sinapsis/clasificación , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Papilas Gustativas/fisiología , Gusto/fisiología , Animales , Humanos
11.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33219051

RESUMEN

Taste buds are maintained via continuous turnover of taste bud cells derived from local epithelial stem cells. A transcription factor Skn-1a (also known as Pou2f3) is required for the generation of sweet, umami (savory), and bitter taste cells that commonly express TRPM5 and CALHM ion channels. Here, we demonstrate that sodium-taste cells distributed only in the anterior oral epithelia and involved in evoking salty taste also require Skn-1a for their generation. We discovered taste cells in fungiform papillae and soft palate that show similar but not identical molecular feature with sweet, umami, and bitter taste-mediated Type II cells. This novel cell population expresses Plcb2, Itpr3, Calhm3, Skn-1a, and ENaCα (also known as Scnn1a) encoding the putative amiloride-sensitive (AS) salty taste receptor but lacks Trpm5 and Gnat3Skn-1a-deficient taste buds are predominantly composed of putative non-sensory Type I cells and sour-sensing Type III cells, whereas wild-type taste buds include Type II (i.e., sweet, umami, and bitter taste) cells and sodium-taste cells. Both Skn-1a and Calhm3-deficient mice have markedly decreased chorda tympani nerve responses to sodium chloride, and those decreased responses are attributed to the loss of the AS salty taste response. Thus, AS salty taste is mediated by Skn-1a-dependent taste cells, whereas amiloride-insensitive salty taste is mediated largely by Type III sour taste cells and partly by bitter taste cells. Our results demonstrate that Skn-1a regulates differentiation toward all types of taste cells except sour taste cells.


Asunto(s)
Papilas Gustativas , Gusto , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sodio
12.
Proc Natl Acad Sci U S A ; 117(35): 21731-21739, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32801213

RESUMEN

Ca2+ uptake by mitochondria regulates bioenergetics, apoptosis, and Ca2+ signaling. The primary pathway for mitochondrial Ca2+ uptake is the mitochondrial calcium uniporter (MCU), a Ca2+-selective ion channel in the inner mitochondrial membrane. MCU-mediated Ca2+ uptake is driven by the sizable inner-membrane potential generated by the electron-transport chain. Despite the large thermodynamic driving force, mitochondrial Ca2+ uptake is tightly regulated to maintain low matrix [Ca2+] and prevent opening of the permeability transition pore and cell death, while meeting dynamic cellular energy demands. How this is accomplished is controversial. Here we define a regulatory mechanism of MCU-channel activity in which cytoplasmic Ca2+ regulation of intermembrane space-localized MICU1/2 is controlled by Ca2+-regulatory mechanisms localized across the membrane in the mitochondrial matrix. Ca2+ that permeates through the channel pore regulates Ca2+ affinities of coupled inhibitory and activating sensors in the matrix. Ca2+ binding to the inhibitory sensor within the MCU amino terminus closes the channel despite Ca2+ binding to MICU1/2. Conversely, disruption of the interaction of MICU1/2 with the MCU complex disables matrix Ca2+ regulation of channel activity. Our results demonstrate how Ca2+ influx into mitochondria is tuned by coupled Ca2+-regulatory mechanisms on both sides of the inner mitochondrial membrane.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Apoptosis , Transporte Biológico , Calcio/fisiología , Canales de Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/fisiología , Citoplasma/metabolismo , Citosol/metabolismo , Células HEK293 , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/fisiología , Oxidación-Reducción , Multimerización de Proteína , Transducción de Señal
13.
Cell Calcium ; 91: 102257, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32777646

RESUMEN

New cryo-electron microscopy structures of the mitochondrial Ca2+ uniporter ion channel complex in various conformations reveal channel gating regulation by Ca2+-dependent unblock of the channel pore by MICU1.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Canales de Calcio/química , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Multimerización de Proteína
14.
Sci Signal ; 13(640)2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665411

RESUMEN

Spontaneous Ca2+ signaling from the InsP3R intracellular Ca2+ release channel to mitochondria is essential for optimal oxidative phosphorylation (OXPHOS) and ATP production. In cells with defective OXPHOS, reductive carboxylation replaces oxidative metabolism to maintain amounts of reducing equivalents and metabolic precursors. To investigate the role of mitochondrial Ca2+ uptake in regulating bioenergetics in these cells, we used OXPHOS-competent and OXPHOS-defective cells. Inhibition of InsP3R activity or mitochondrial Ca2+ uptake increased α-ketoglutarate (αKG) abundance and the NAD+/NADH ratio, indicating that constitutive endoplasmic reticulum (ER)-to-mitochondria Ca2+ transfer promoted optimal αKG dehydrogenase (αKGDH) activity. Reducing mitochondrial Ca2+ inhibited αKGDH activity and increased NAD+, which induced SIRT1-dependent autophagy in both OXPHOS-competent and OXPHOS-defective cells. Whereas autophagic flux in OXPHOS-competent cells promoted cell survival, it was impaired in OXPHOS-defective cells because of inhibition of autophagosome-lysosome fusion. Inhibition of αKGDH and impaired autophagic flux in OXPHOS-defective cells resulted in pronounced cell death in response to interruption of constitutive flux of Ca2+ from ER to mitochondria. These results demonstrate that mitochondria play a fundamental role in maintaining bioenergetic homeostasis of both OXPHOS-competent and OXPHOS-defective cells, with Ca2+ regulation of αKGDH activity playing a pivotal role. Inhibition of ER-to-mitochondria Ca2+ transfer may represent a general therapeutic strategy against cancer cells regardless of their OXPHOS status.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Fosforilación Oxidativa , Línea Celular Tumoral , Supervivencia Celular , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Humanos , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología
15.
Curr Biol ; 30(14): 2729-2738.e4, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32502414

RESUMEN

Habituation is an adaptive learning process that enables animals to adjust innate behaviors to changes in their environment. Despite its well-documented implications for a wide diversity of behaviors, the molecular and cellular basis of habituation learning is not well understood. Using whole-genome sequencing of zebrafish mutants isolated in an unbiased genetic screen, we identified the palmitoyltransferase Huntingtin interacting protein 14 (Hip14) as a critical regulator of habituation learning. We demonstrate that Hip14 regulates depression of sensory inputs onto an identified hindbrain neuron and provide evidence that Hip14 palmitoylates the Shaker-like K+ voltage-gated channel subunit (Kv1.1), thereby regulating Kv1.1 subcellular localization. Furthermore, we show that, like for Hip14, loss of Kv1.1 leads to habituation deficits and that Hip14 is dispensable in development and instead acts acutely to promote habituation. Combined, these results uncover a previously unappreciated role for acute posttranslational palmitoylation at defined circuit components to regulate learning.


Asunto(s)
Aciltransferasas/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Habituación Psicofisiológica/genética , Aprendizaje/fisiología , Lipoilación/genética , Lipoilación/fisiología , Proteínas del Tejido Nervioso/fisiología , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Terminales Presinápticos/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo
16.
Elife ; 92020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32420875

RESUMEN

Modulating cytoplasmic Ca2+ concentration ([Ca2+]i) by endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+-release channels is a universal signaling pathway that regulates numerous cell-physiological processes. Whereas much is known regarding regulation of InsP3R activity by cytoplasmic ligands and processes, its regulation by ER-luminal Ca2+ concentration ([Ca2+]ER) is poorly understood and controversial. We discovered that the InsP3R is regulated by a peripheral membrane-associated ER-luminal protein that strongly inhibits the channel in the presence of high, physiological [Ca2+]ER. The widely-expressed Ca2+-binding protein annexin A1 (ANXA1) is present in the nuclear envelope lumen and, through interaction with a luminal region of the channel, can modify high-[Ca2+]ER inhibition of InsP3R activity. Genetic knockdown of ANXA1 expression enhanced global and local elementary InsP3-mediated Ca2+ signaling events. Thus, [Ca2+]ER is a major regulator of InsP3R channel activity and InsP3R-mediated [Ca2+]i signaling in cells by controlling an interaction of the channel with a peripheral membrane-associated Ca2+-binding protein, likely ANXA1.


Asunto(s)
Anexina A1/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células A549 , Animales , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Fenómenos Fisiológicos Celulares/fisiología , Pollos , Células HEK293 , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Activación del Canal Iónico , Ratones , Técnicas de Placa-Clamp , Ratas
17.
iScience ; 23(4): 101037, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32315830

RESUMEN

MCU is a Ca2+-selective channel that mediates mitochondrial Ca2+ influx. The human channel contains tetrameric pore-forming MCU, regulatory subunits MICU1/2, and EMRE that is required both for channel function and MICU1/2-mediated Ca2+ regulation. A structure of MCU with EMRE revealed a 4:4 stoichiometry, but the stoichiometry in vivo is unknown. Expression of tagged EMRE and MCU at a 1:10 ratio in cells lacking EMRE and MCU restored channel activity but not full channel gatekeeping. Increasing EMRE expression enhanced gatekeeping, raising the cytoplasmic Ca2+ concentration ([Ca2+]c) threshold for channel activation. MCU-EMRE concatemers creating channels with 1EMRE:4MCU restored Ca2+ uptake in cells, whereas cells expressing concatemers that enforced a 4EMRE:4MCU stoichiometry demonstrated enhanced channel gatekeeping. Concatemers enforcing 2EMRE/4MCU recapitulated the activity, gatekeeping, and size of endogenous channels. Thus, MCU does not require four EMRE, with most endogenous channels containing two, but complexes with 1-4 EMRE have activity with full or partial gatekeeping.

18.
Nat Struct Mol Biol ; 27(3): 227-228, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32086497
19.
Nat Med ; 24(9): 1482, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29895835

RESUMEN

In the version of this article initially published, the "[13C2]α-ketoglutarate" label on Fig. 1g is incorrect. It should be "[13C5]α-ketoglutarate". Additionally, in Fig. 3b, the "AAV-GFP" group is missing a notation for significance, and in Fig. 3c, the "AAV-GLS2-sh" group is missing a notation for significance. There should be a double asterisk notating significance in both panels. Finally, in the Fig. 4g legend, "[13C6]UDP-glucose" should be "[13C3]UDP-glucose", and in the Fig. 4h legend, "[13C6]hexose" should be "[13C3]hexose". The errors have been corrected in the HTML and PDF versions of this article.

20.
Neuron ; 98(3): 547-561.e10, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29681531

RESUMEN

Binding of sweet, umami, and bitter tastants to G protein-coupled receptors (GPCRs) in apical membranes of type II taste bud cells (TBCs) triggers action potentials that activate a voltage-gated nonselective ion channel to release ATP to gustatory nerves mediating taste perception. Although calcium homeostasis modulator 1 (CALHM1) is necessary for ATP release, the molecular identification of the channel complex that provides the conductive ATP-release mechanism suitable for action potential-dependent neurotransmission remains to be determined. Here we show that CALHM3 interacts with CALHM1 as a pore-forming subunit in a CALHM1/CALHM3 hexameric channel, endowing it with fast voltage-activated gating identical to that of the ATP-release channel in vivo. Calhm3 is co-expressed with Calhm1 exclusively in type II TBCs, and its genetic deletion abolishes taste-evoked ATP release from taste buds and GPCR-mediated taste perception. Thus, CALHM3, together with CALHM1, is essential to form the fast voltage-gated ATP-release channel in type II TBCs required for GPCR-mediated tastes.


Asunto(s)
Canales de Calcio/fisiología , Activación del Canal Iónico/fisiología , Receptores Acoplados a Proteínas G/fisiología , Receptores Purinérgicos/fisiología , Percepción del Gusto/fisiología , Gusto/fisiología , Animales , Canales de Calcio/análisis , Femenino , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/análisis , Receptores Purinérgicos/análisis , Transmisión Sináptica/fisiología , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...