Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612229

RESUMEN

During their lifetime, sheep undergo many painful husbandry and disease processes. Procedures undertaken on the farm, such as tail docking, castration, and mulesing, all cause considerable pain. In addition, sheep may experience painful diseases and injuries that require treatment by veterinary practitioners, and in biomedical research, sheep may undergo painful experimental procedures or conditions. It is important due to ethics, animal welfare, social licence, and, at times, legal requirements for farmers, veterinary practitioners, and researchers to provide pain relief for animals in their care. While there is a heightened awareness of and a greater interest in animal welfare, there remain few licensed and known analgesia options for sheep within Australia. A literature review was undertaken to identify currently known and potential future options for analgesic agents in sheep in farm and biomedical settings. Non-steroidal anti-inflammatories, opioids, local anaesthetics, α2 adrenoreceptor agonists, and NMDA receptor antagonists are some of the more common classes of analgesic drugs referred to in the literature, but few drugs are registered for use in sheep, with even fewer proven to be effective. Only six analgesic product formulations, namely, lignocaine (e.g., Numocaine®), Tri-Solfen®, ketamine, xylazine, and meloxicam (oral transmucosal and injectable formulations), are currently registered in Australia and known to be efficacious in some types of painful conditions in sheep. The gap in knowledge and availability of analgesia in sheep can pose risks to animal welfare, social licence, and research outcomes. This article presents a summary of analgesic agents that have been used in sheep on farms and in clinical veterinary and biomedical research settings along with details on whether their efficacy was assessed, doses, routes of administration, indication for use, and pain assessment techniques (if any) used. The outcome of this research highlights the challenges, gaps, and opportunities for better analgesia options in sheep.

2.
AIMS Microbiol ; 9(3): 540-553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649802

RESUMEN

Prokaryotic α-carbonic anhydrases (α-CA) are metalloenzymes that catalyze the reversible hydration of CO2 to bicarbonate and proton. We had reported the first crystal structure of a pyschrohalophilic α-CA from a deep-sea bacterium, Photobacterium profundum SS9. In this manuscript, we report the first biochemical characterization of P. profundum α-CA (PprCA) which revealed several catalytic properties that are atypical for this class of CA's. Purified PprCA exhibited maximal catalytic activity at psychrophilic temperatures with substantial decrease in activity at mesophilic and thermophilic range. Similar to other α-CA's, Ppr9A showed peak activity at alkaline pH (pH 11), although, PprCA retained 88% of its activity even at acidic pH (pH 5). Exposing PprCA to varying concentrations of oxidizing and reducing agents revealed that N-terminal cysteine residues in PprCA may play a role in the structural stability of the enzyme. Although inefficient in CO2 hydration activity under mesophilic and thermophilic temperatures, PprCA exhibited salt-dependent thermotolerance and catalytic activity under extreme halophilic conditions. Similar to other well-characterized α-CA's, PprCA is also inhibited by monovalent anions even at low concentrations. Finally, we demonstrate that PprCA accelerates CO2 biomineralization to calcium carbonate under alkaline conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...