Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 125(17): 4476-4488, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33899479

RESUMEN

The formation of aggregates of ionic species is a crucial process in liquids and solutions. Ion speciation is particularly interesting for the case of ionic liquids (ILs) since these Coulombic fluids consist solely of ions. Most of their unique properties, such as enthalpies of vaporization and conductivities, are strongly related to ion pair formation. Here, we show that the balance of hydrogen-bonded contact ion pairs (CIP) and solvent-separated (SIP) ion pairs in protic ionic liquids (PILs) and in their mixtures with water can be well understood by a combination of far-infrared (FIR) and mid-infrared (MIR) spectroscopy, density functional theory (DFT) calculations of PIL/water aggregates, and molecular dynamics (MD) simulations of PIL/water mixtures. This combined approach is applied to mixtures of triethylammonium methanesulfonate [Et3NH][MeSO3] with water. It is shown that ion speciation in this mixture depends on three parameters: the relative hydrogen bond acceptor strength of the counter ion and the molecular solvent, the solvent concentration, and the temperature. For selected PIL/water mixtures, the equilibrium constants for CIPs and SIPs were determined as a function of the solvent content and temperature. Finally, for the studied PIL/water mixtures, the transition from CIPs to SIPs could be understood on enthalpic and entropic grounds. A detailed picture of this interconversion process could be described at the molecular level by means of MD simulations. In addition, the concentration dependence of ion pair formation can be well understood with help of a simplified "cartoon-like" statistical model describing hydrogen bond redistribution.

2.
Anal Chem ; 88(2): 1328-35, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26651235

RESUMEN

High resolution mass spectrometry was utilized to study the highly complex product mixtures resulting from electrochemical breakdown of lignin. As most of the chemical structures of the degradation products were unknown, enhanced mass defect filtering techniques were implemented to simplify the characterization of the mixtures. It was shown that the implemented ionization techniques had a major impact on the range of detectable breakdown products, with atmospheric pressure photoionization in negative ionization mode providing the widest coverage in our experiments. Different modified Kendrick mass plots were used as a basis for mass defect filtering, where Kendrick mass defect and the mass defect of the lignin-specific guaiacol (C7H7O2) monomeric unit were utilized, readily allowing class assignments independent of the oligomeric state of the product. The enhanced mass defect filtering strategy therefore provided rapid characterization of the sample composition. In addition, the structural similarities between the compounds within a degradation sequence were determined by comparison to a tentatively identified product of this compound series. In general, our analyses revealed that primarily breakdown products with low oxygen content were formed under electrochemical conditions using protic ionic liquids as solvent for lignin.


Asunto(s)
Lignina/química , Lignina/metabolismo , Espectrometría de Masas/métodos , Técnicas Electroquímicas , Conformación Molecular
3.
J Phys Chem B ; 119(33): 10643-51, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26207379

RESUMEN

Quasielastic neutron scattering (QENS) in combination with deuterium labeling allows for studying protonated "highlighted" species and extracting detailed information about tangled stochastic processes. This approach has been applied to examine proton dynamics in the protic ionic liquid, triethylammonium triflate. The temperature range covered during the experiments (2-440 K) included two melting transitions correspondingly reflected in the global and localized dynamics of the cation. To focus on the dynamics of the acidic proton, QENS spectra of the sample with the deuterated alkyl side chains were analyzed. The remaining hydrogen atom served as a tagged particle for investigating both global long-range motion of the cation and specific dynamics of the proton and, thus, provided insight into the transport properties of triethylammonium triflate, which is important for designing electrochemical devices.

4.
Angew Chem Int Ed Engl ; 54(9): 2792-5, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25639210

RESUMEN

The properties of ionic liquids are determined by the energy-balance between Coulomb-interaction, hydrogen-bonding, and dispersion forces. Out of a set of protic ionic liquids (PILs), including trialkylammonium cations and methylsulfonate and triflate anions we could detect the transfer from hydrogen-bonding to dispersion-dominated interaction between cation and anion in the PIL [(C6 H13 )3 NH][CF3 SO3 ]. The characteristic vibrational features for both ion-pair species can be detected and assigned in the far-infrared spectra. Our approach gives direct access to the relative strength of hydrogen-bonding and dispersion forces in a Coulomb-dominated system. Dispersion-corrected density functional theory (DFT) calculations support the experimental findings. The dispersion forces could be quantified to contribute about 2.3 kJ mol(-1) per additional methylene group in the alkyl chains of the ammonium cation.

5.
Chemphyschem ; 15(12): 2604-9, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24925518

RESUMEN

The cation-anion and cation-solvent interactions in solutions of the protic ionic liquid (PIL) [Et3NH][I] dissolved in solvents of different polarities are studied by means of far infrared vibrational (FIR) spectroscopy and density functional theory (DFT) calculations. The dissociation of contact ion pairs (CIPs) and the resulting formation of solvent-separated ion pairs (SIPs) can be observed and analyzed as a function of solvent concentration, solvent polarity, and temperature. In apolar environments, the CIPs dominate for all solvent concentrations and temperatures. At high concentrations of polar solvents, SIPs are favored over CIPs. For these PIL/solvent mixtures, CIPs are reformed by increasing the temperature due to the reduced polarity of the solvent. Overall, this approach provides equilibrium constants, free energies, enthalpies, and entropies for ion-pair formation in trialkylammonium-containing PILs. These results have important implications for the understanding of solvation chemistry and the reactivity of ionic liquids.

6.
Angew Chem Int Ed Engl ; 52(47): 12439-42, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24115351

RESUMEN

Polarity controls the equilibrium constants and free energies of contact ion pairs (CIPs) and solvent-separated ion pairs (SIPs) in mixtures of protic ionic liquids and molecular solvents. The subtle balance between the ionic species was studied by far-infrared difference spectra and related DFT-calculated properties for solvents of low and high polarity and for different solvent concentrations.


Asunto(s)
Líquidos Iónicos/química , Solventes/química , Iones/química , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...