RESUMEN
BACKGROUND: A major obstacle in translating the therapeutic potential of chimeric antigen receptor (CAR) T cells to children with central nervous system (CNS) tumors is the blood-brain barrier. To overcome this limitation, preclinical and clinical studies have supported the use of repeated, locoregional intracranial CAR T-cell delivery. However, there is limited literature available describing the process for the involvement of an investigational drug service (IDS) pharmacy, particularly in the setting of a children's hospital with outpatient dosing for CNS tumors. OBJECTIVES: To describe Seattle Children's Hospital's experience in clinically producing CAR T cells and the implementation of IDS pharmacy practices used to deliver more than 300 intracranial CAR T-cell doses to children, as well as to share how we refined the processing techniques from CAR T-cell generation to the thawing of fractionated doses for intracranial delivery. METHODS: Autologous CD4+ and CD8+ T cells were collected and transduced to express HER2, EGFR, or B7-H3-specific CAR T cells. Cryopreserved CAR T cells were thawed by the IDS pharmacy before intracranial delivery to patients with recurrent/refractory CNS tumors or with diffuse intrinsic pontine glioma/diffuse midline glioma. RESULTS: The use of a thaw-and-dilute procedure for cryopreserved individual CAR T-cell doses provides reliable viability and is more efficient than typical thaw-and-wash protocols. Cell viability with the thaw-and-dilute protocol was approximately 75% and was always within 10% of the viability assessed at cryopreservation. Cell viability was preserved through 6 hours after thawing, which exceeded the 1-hour time frame from thawing to infusion. CONCLUSION: As the field of adoptive immunotherapy grows and continues to bring hope to patients with fatal CNS malignancies, it is critical to focus on improving the preparatory steps for CAR T-cell delivery.
RESUMEN
Pediatric brain cancer is the leading cause of disease-related mortality in children, and many aggressive tumors still lack effective treatment strategies. We characterized aberrant alternative splicing across pediatric brain tumors, identifying pediatric high-grade gliomas (HGGs) among the most heterogeneous. Annotating these events with UniProt, we identified 11,940 splice events in 5,368 genes leading to potential protein function changes. We discovered CDC-like kinase 1 (CLK1) is aberrantly spliced to include exon 4, resulting in a gain of two phosphorylation sites and subsequent activation. Inhibition of CLK1 with Cirtuvivint significantly decreased both cell viability and proliferation in the pediatric HGG KNS-42 cell line. Morpholino-mediated depletion of CLK1 exon 4 splicing reduced RNA expression, protein abundance, and cell viability with concurrent differential expression of 78 cancer genes and differential splicing at functional sites in 193 cancer genes. Our findings highlight a dependency of pediatric HGGs on CLK1 and represent a promising therapeutic strategy.
RESUMEN
PURPOSE: Retinoblastoma is the most common intraocular malignancy in children. Although new chemotherapeutic approaches have improved ocular salvage rates, novel therapies are required for patients with refractory intraocular and metastatic disease. Chimeric antigen receptor (CAR) T cells targeting glypican-2 (GPC2) are a potential new therapeutic strategy. EXPERIMENTAL DESIGN: GPC2 expression and its regulation by the E2F1 transcription factor were studied in retinoblastoma patient samples and cellular models. In vitro, we performed functional studies comparing GPC2 CAR T cells with different costimulatory domains (4-1BB and CD28). In vivo, the efficacy of local and systemic administration of GPC2 CAR T cells was evaluated in intraocular and leptomeningeal human retinoblastoma xenograft models. RESULTS: Retinoblastoma tumors, but not healthy retinal tissues, expressed cell surface GPC2, and this tumor-specific expression was driven by E2F1. GPC2-directed CARs with 4-1BB costimulation (GPC2.BBz) were superior to CARs with CD28 stimulatory domains (GPC2.28z), efficiently inducing retinoblastoma cell cytotoxicity and enhancing T-cell proliferation and polyfunctionality. In vivo, GPC2.BBz CARs had enhanced persistence, which led to significant tumor regression compared with either control CD19 or GPC2.28z CARs. In intraocular models, GPC2.BBz CAR T cells efficiently trafficked to tumor-bearing eyes after intravitreal or systemic infusions, significantly prolonging ocular survival. In central nervous system (CNS) retinoblastoma models, intraventricular or systemically administered GPC2.BBz CAR T cells were activated in retinoblastoma-involved CNS tissues, resulting in robust tumor regression with substantially extended overall mouse survival. CONCLUSIONS: GPC2-directed CAR T cells are effective against intraocular and CNS metastatic retinoblastomas.
Asunto(s)
Glipicanos , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Retinoblastoma , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Retinoblastoma/inmunología , Retinoblastoma/patología , Retinoblastoma/terapia , Ratones , Receptores Quiméricos de Antígenos/inmunología , Glipicanos/inmunología , Glipicanos/antagonistas & inhibidores , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias del Sistema Nervioso Central/inmunología , Neoplasias del Sistema Nervioso Central/secundario , Neoplasias del Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , FemeninoRESUMEN
PURPOSE OF REVIEW: Given the invasive and high-risk nature of brain surgery, the need for non-invasive biomarkers obtained from the peripheral blood is greatest in tumors of the central nervous system (CNS). In this comprehensive review, we highlight recent advances in blood biomarker development for adult and pediatric brain tumors. RECENT FINDINGS: We summarize recent blood biomarker development for CNS tumors across multiple key analytes, including peripheral blood mononuclear cells, cell-free DNA, cell-free RNA, proteomics, circulating tumor cells, and tumor-educated platelets. We also discuss methods for enhancing blood biomarker detection through transient opening of the blood-brain barrier. Although blood-based biomarkers are not yet used in routine neuro-oncology practice, this field is advancing rapidly and holds great promise for improved and non-invasive management of patients with brain tumors. Prospective and adequately powered studies are needed to confirm the clinical utility of any blood biomarker prior to widespread clinical implementation.
Asunto(s)
Neoplasias Encefálicas , Células Neoplásicas Circulantes , Niño , Adulto , Humanos , Biomarcadores de Tumor , Leucocitos Mononucleares/patología , Estudios Prospectivos , Neoplasias Encefálicas/diagnóstico , Células Neoplásicas Circulantes/patologíaRESUMEN
Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition syndrome associated with the development of hypermutant pediatric high-grade glioma, and confers a poor prognosis. While therapeutic histone deacetylase (HDAC) inhibition of diffuse intrinsic pontine glioma (DIPG) has been reported; here, we use a clinically relevant biopsy-derived hypermutant DIPG model (PBT-24FH) and a CRISPR-Cas9 induced genetic model to evaluate the efficacy of HDAC inhibition against hypermutant DIPG. We screened PBT-24FH cells for sensitivity to a panel of HDAC inhibitors (HDACis) in vitro, identifying two HDACis associated with low nanomolar IC50s, quisinostat (27 nM) and romidepsin (2 nM). In vivo, quisinostat proved more efficacious, inducing near-complete tumor regression in a PBT-24FH flank model. RNA sequencing revealed significant quisinostat-driven changes in gene expression, including upregulation of neural and pro-inflammatory genes. To validate the observed potency of quisinostat in vivo against additional hypermutant DIPG models, we tested quisinostat in genetically-induced mismatch repair (MMR)-deficient DIPG flank tumors, demonstrating that loss of MMR function increases sensitivity to quisinostat in vivo. Here, we establish the preclinical efficacy of quisinostat against hypermutant DIPG, supporting further investigation of epigenetic targeting of hypermutant pediatric cancers with the potential for clinical translation. These findings support further investigation of HDAC inhibitors against pontine high-grade gliomas, beyond only those with histone mutations, as well as against other hypermutant central nervous system tumors.
Asunto(s)
Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Niño , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Inhibidores de Histona Desacetilasas/farmacología , Histonas , Ácidos Hidroxámicos , Glioma/tratamiento farmacológico , Glioma/genéticaRESUMEN
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Virus Oncolíticos , Niño , Humanos , Neoplasias del Sistema Nervioso Central/terapia , InmunoterapiaRESUMEN
Diffuse leptomeningeal glioneuronal tumor (DLGNT) occurs predominantly in children and is typically characterized by diffuse leptomeningeal lesions throughout the neuroaxis with focal segments of parenchymal involvement. Recent reports have identified cases without diffuse leptomeningeal involvement that retain classic glioneuronal features on histology. In this report, we present a case of a 4-year-old boy with a large cystic-solid intramedullary spinal cord lesion that on surgical biopsy revealed a biphasic astrocytic tumor with sparsely distributed eosinophilic granular bodies and Rosenthal fibers. Next-generation sequencing revealed a KIAA1549-BRAF fusion, 1p/19q codeletion, and lack of an IDH1 mutation. Methylation profiling demonstrated a calibrated class score of 0.98 for DLGNT and copy number loss of 1p. Despite the morphologic similarities to pilocytic astrocytoma and the lack of oligodendroglial/neuronal components or leptomeningeal dissemination, the molecular profile was definitive in classifying the tumor as DLGNT. This case highlights the importance of molecular and genetic testing in the characterization of pediatric central nervous system tumors.
RESUMEN
Pediatric CNS tumors are responsible for the majority of cancer-related deaths in children and have poor prognoses, despite advancements in chemotherapy and radiotherapy. As many tumors lack efficacious treatments, there is a crucial need to develop more promising therapeutic options, such as immunotherapies; the use of chimeric antigen receptor (CAR) T cell therapy directed against CNS tumors is of particular interest. Cell surface targets such as B7-H3, IL13RA2, and the disialoganglioside GD2 are highly expressed on the surface of several pediatric and adult CNS tumors, raising the opportunity to use CAR T cell therapy against these and other surface targets. To evaluate the repeated locoregional delivery of CAR T cells in preclinical murine models, an indwelling catheter system that recapitulates indwelling catheters currently being used in human clinical trials was established. Unlike stereotactic delivery, the indwelling catheter system allows for repeated dosing without the use of multiple surgeries. This protocol describes the intratumoral placement of a fixed guide cannula that has been used to successfully test serial CAR T cell infusions in orthotopic murine models of pediatric brain tumors. Following orthotopic injection and engraftment of the tumor cells in mice, intratumoral placement of a fixed guide cannula is completed on a stereotactic apparatus and secured with screws and acrylic resin. Treatment cannulas are then inserted through the fixed guide cannula for repeated CAR T cell delivery. Stereotactic placement of the guide cannula can be adjusted to deliver CAR T cells directly into the lateral ventricle or other locations in the brain. This platform offers a reliable mechanism for the preclinical testing of repeated intracranial infusions of CAR T cells and other novel therapeutics for these devastating pediatric tumors.
Asunto(s)
Neoplasias Encefálicas , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Neoplasias Encefálicas/patología , Cánula , Inmunoterapia Adoptiva/métodos , Linfocitos T , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. Based on adoptive cellular therapy's clinical success against childhood leukemia and the preclinical efficacy against pediatric CNS tumors, chimeric antigen receptor (CAR) T cells offer hope of improving outcomes for recurrent tumors and universally fatal diseases such as diffuse intrinsic pontine glioma (DIPG). However, a major obstacle for tumors of the brain and spine is ineffective T cell chemotaxis to disease sites. Locoregional CAR T cell delivery via infusion through an intracranial catheter is currently under study in multiple early phase clinical trials. Here, we describe the Seattle Children's single-institution experience including the multidisciplinary process for the preparation of successful, repetitive intracranial T cell infusion for children and the catheter-related safety of our 307 intracranial CAR T cell doses.
Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Niño , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfocitos T , Neoplasias Encefálicas/patología , Neoplasias del Sistema Nervioso Central/terapia , CatéteresRESUMEN
Diffuse intrinsic pontine glioma (DIPG) remains a fatal brainstem tumor demanding innovative therapies. As B7-H3 (CD276) is expressed on central nervous system (CNS) tumors, we designed B7-H3-specific chimeric antigen receptor (CAR) T cells, confirmed their preclinical efficacy, and opened BrainChild-03 (NCT04185038), a first-in-human phase I trial administering repeated locoregional B7-H3 CAR T cells to children with recurrent/refractory CNS tumors and DIPG. Here, we report the results of the first three evaluable patients with DIPG (including two who enrolled after progression), who received 40 infusions with no dose-limiting toxicities. One patient had sustained clinical and radiographic improvement through 12 months on study. Patients exhibited correlative evidence of local immune activation and persistent cerebrospinal fluid (CSF) B7-H3 CAR T cells. Targeted mass spectrometry of CSF biospecimens revealed modulation of B7-H3 and critical immune analytes (CD14, CD163, CSF-1, CXCL13, and VCAM-1). Our data suggest the feasibility of repeated intracranial B7-H3 CAR T-cell dosing and that intracranial delivery may induce local immune activation. SIGNIFICANCE: This is the first report of repeatedly dosed intracranial B7-H3 CAR T cells for patients with DIPG and includes preliminary tolerability, the detection of CAR T cells in the CSF, CSF cytokine elevations supporting locoregional immune activation, and the feasibility of serial mass spectrometry from both serum and CSF. This article is highlighted in the In This Issue feature, p. 1.
Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Antígenos B7 , Neoplasias del Tronco Encefálico/terapia , Linfocitos TRESUMEN
BACKGROUND: Pediatric brain tumors are the leading cause of cancer death in children with an urgent need for innovative therapies. Glypican 2 (GPC2) is a cell surface oncoprotein expressed in neuroblastoma for which targeted immunotherapies have been developed. This work aimed to characterize GPC2 expression in pediatric brain tumors and develop an mRNA CAR T cell approach against this target. METHODS: We investigated GPC2 expression across a cohort of primary pediatric brain tumor samples and cell lines using RNA sequencing, immunohistochemistry, and flow cytometry. To target GPC2 in the brain with adoptive cellular therapies and mitigate potential inflammatory neurotoxicity, we used optimized mRNA to create transient chimeric antigen receptor (CAR) T cells. We developed four mRNA CAR T cell constructs using the highly GPC2-specific fully human D3 single chain variable fragment for preclinical testing. RESULTS: We identified high GPC2 expression across multiple pediatric brain tumor types including medulloblastomas, embryonal tumors with multilayered rosettes, other central nervous system embryonal tumors, as well as definable subsets of highly malignant gliomas. We next validated and prioritized CAR configurations using in vitro cytotoxicity assays with GPC2-expressing neuroblastoma cells, where the light-to-heavy single chain variable fragment configurations proved to be superior. We expanded the testing of the two most potent GPC2-directed CAR constructs to GPC2-expressing medulloblastoma and high-grade glioma cell lines, showing significant GPC2-specific cell death in multiple models. Finally, biweekly locoregional delivery of 2-4 million GPC2-directed mRNA CAR T cells induced significant tumor regression in an orthotopic medulloblastoma model and significantly prolonged survival in an aggressive orthotopic thalamic diffuse midline glioma xenograft model. No GPC2-directed CAR T cell related neurologic or systemic toxicity was observed. CONCLUSION: Taken together, these data show that GPC2 is a highly differentially expressed cell surface protein on multiple malignant pediatric brain tumors that can be targeted safely with local delivery of mRNA CAR T cells, laying the framework for the clinical translation of GPC2-directed immunotherapies for pediatric brain tumors.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioma , Meduloblastoma , Neuroblastoma , Receptores Quiméricos de Antígenos , Anticuerpos de Cadena Única , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Niño , Glioma/genética , Glioma/terapia , Glipicanos/genética , Humanos , Neuroblastoma/patología , Proteínas Oncogénicas , ARN Mensajero/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Kaposiform lymphangiomatosis (KLA) is a rare lymphatic anomaly primarily affecting the mediastinum with high mortality rate. We present a patient with KLA and significant disease burden harboring a somatic point mutation in the Casitas B lineage lymphoma (CBL) gene. She was treated with MEK inhibition with complete resolution of symptoms, near-complete resolution of lymphatic fluid burden, and remodeling of her lymphatic system. While patients with KLA have been reported to harbor mutations in NRAS, here we report for the first time a causative mutation in the CBL gene in a patient with KLA, successfully treated with Ras pathway inhibition.
Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos , Femenino , Humanos , Mutación , Proto-Oncogenes MasRESUMEN
BACKGROUND AIMS: Manufacturing of potent chimeric antigen receptor (CAR) T cells requires phenotypically naive and early memory T cells. We hypothesized lymphatic fluid collected from the thoracic duct of children would serve as a unique reservoir for early T cells, which could then be used for CAR T-cell therapy. METHODS: We evaluated lymphatic fluid collected from 25 pediatric patients undergoing thoracic duct cannulation for other clinical indications. RESULTS: Lymphatic fluid in the thoracic duct was rich in T cells, with higher percentage of naive and stem central memory T-cell subsets compared with paired blood samples. T cells from lymphatic fluid showed decreased negative checkpoint regulators on the surface and increased rapid expansion with bead activation. Creation of CD19-directed CAR T cells from blood and lymphatic T cells showed similar lentiviral transduction properties, but CAR T cells generated from lymphatic fluid produced superior cytotoxicity in a murine leukemia model because they were able to achieve equivalent tumor eradication at lower doses. CONCLUSIONS: These results are the first characterization of T cells from the thoracic duct of pediatric patients and suggest an alternative approach for manufacturing of cellular therapy that will improve both expansion and cytotoxic effect.
Asunto(s)
Inmunoterapia Adoptiva , Linfa/citología , Linfocitos T/citología , Conducto Torácico/citología , Animales , Niño , Citotoxicidad Inmunológica , Femenino , Humanos , Ratones Endogámicos NOD , Ratones SCID , Fenotipo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/metabolismoRESUMEN
PALB2 (partner and localizer of BRCA2) gene encodes a protein that colocalizes with BRCA2 in nuclear foci and likely permits the stable intranuclear localization and accumulation of BRCA2PALB2 plays a critical role in maintaining genome integrity through its role in the Fanconi anemia and homologous recombination DNA repair pathways. It has a known loss-of-function disease mechanism. Biallelic PALB2 pathogenic variants have been described in autosomal recessive Fanconi anemia. Heterozygous pathogenic variants in PALB2 are associated with increased risk for female and male breast cancer and pancreatic cancer (Science 324: 217; Cancer Res 71: 2222-2229; N Engl J Med 371: 497-506). Heterozygous germline PALB2 mutations have also been observed in patients with medulloblastoma (Lancet Oncol 19: 785-798). However, PALB2-related cancer predisposition to high-grade gliomas has not been reported. Here we report a germline PALB2 pathogenic variant (c.509_510delGA, p.Arg170Ilefs*14, NM_024675.3) found in a pediatric patient with high-grade glioma. This variant was first identified by tumor sequencing using the Children's Hospital of Philadelphia (CHOP) Comprehensive Solid Tumor Panel and then confirmed to be a germline change using the CHOP Comprehensive Hereditary Cancer Panel on DNA from a blood sample of this patient. Parental studies showed that this variant was paternally inherited. Further studies are needed to illustrate if pathogenic variants in PALB2 convey increased risk to developing brain tumor. This case also highlights the potential of identifying germline mutation through tumor sequencing.
Asunto(s)
Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Glioma/genética , Niño , Proteína del Grupo de Complementación N de la Anemia de Fanconi/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Células Germinativas/metabolismo , Mutación de Línea Germinal/genética , HumanosRESUMEN
The field of cancer immunotherapy has progressed at an accelerated rate over the past decade. Pediatric brain tumors thus far have presented a formidable challenge for immunotherapy development, given their typically low mutational burden, location behind the blood-brain barrier in a unique tumor microenvironment, and intratumoral heterogeneity. Despite these challenges, recent developments in the field have resulted in exciting preclinical evidence for various immunotherapies and multiple clinical trials. This work reviews the history and advances in active immunotherapy, checkpoint blockade, and adoptive T-cell therapy for pediatric brain tumors, including ongoing clinical trials.
Asunto(s)
Neoplasias Encefálicas/terapia , Inmunoterapia/métodos , Inmunoterapia/tendencias , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , MasculinoRESUMEN
Adoptive T cell therapy is a form of cellular therapy that utilizes human immune cells, often empowered by the expression of recombinant proteins, to attack selected targets present on tumor or infected cells. T cell-based immunotherapy has been progressing over the past several decades, and reached a milestone with the recent US Food and Drug Administration (FDA) approval of chimeric antigen receptor T cell therapy for relapsed and refractory leukemia and lymphoma. Although most studies have used viral vectors, a growing number of researchers have come to appreciate in vitro-transcribed (IVT) mRNA for the development, testing, and application of T cell-based immunotherapeutics. IVT mRNA offers inherent safety features, highly efficient recombinant protein translation, and the ability to control pharmacokinetic properties of the therapy. In this review, we discuss the history of IVT mRNA in adoptive T cell therapy, from tumor-infiltrating lymphocytes and T cell receptor-based therapies to chimeric antigen receptor therapy and gene-editing techniques, as well as prior and ongoing clinical trials.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/tendencias , ARN Mensajero/genética , Linfocitos T/inmunología , Transcripción Genética , Animales , Edición Génica , Vectores Genéticos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Técnicas In Vitro , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de AntígenosRESUMEN
T cells made with messenger RNA (mRNA) encoding chimeric antigen receptor (CAR) offer a safe alternative to those transduced with viral CARs by mitigating the side effects of constitutively active T cells. Previous studies have shown that mRNA CAR T cells are transiently effective but lack persistence and potency across tumor types. It was hypothesized that the efficacy of mRNA CARs could be improved by utilizing recent advancements in RNA technology, such as incorporating a modified nucleoside, 1-methylpseudouridine, into the mRNA and applying a novel purification method using RNase III to eliminate dsRNA contaminants. T cells electroporated with nucleoside-modified and purified mRNA encoding CD19 CAR showed an initial twofold increase in CAR surface expression, as well as a twofold improvement in cytotoxic killing of leukemia cells that persisted up to 5 days. T cells generated with nucleoside-modified and purified CAR mRNA also showed reduced expression of checkpoint regulators and a differential pattern of genetic activation compared to those made with conventional mRNA. In vivo studies using a leukemia mouse model revealed that the most robust 100-fold suppression of leukemic burden was achieved using T cells electroporated with purified mRNAs, regardless of their nucleoside modification. The results provide a novel approach to generate mRNA for clinical trials, and poise mRNA CAR T cells for increased efficacy during testing as new CAR targets emerge.
Asunto(s)
Traslado Adoptivo , Electroporación , Leucemia , ARN Mensajero , Receptores Quiméricos de Antígenos , Linfocitos T/inmunología , Animales , Antígenos CD19/genética , Antígenos CD19/inmunología , Línea Celular Tumoral , Humanos , Leucemia/genética , Leucemia/inmunología , Leucemia/patología , Leucemia/terapia , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/aislamiento & purificación , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE OF REVIEW: Immunotherapy for the treatment of cancer has advanced at a tremendous pace over the last decade. In this review, we provide an overview of recent progress in immunotherapy for the treatment of leukemia, focusing on antibody-drug conjugates (ADC), bi-specific T-cell engagers (BiTE), and chimeric antigen receptor (CAR) T cells. RECENT FINDINGS: Ongoing clinical trials of CAR T cells directed against CD19 have produced complete remission rates as high as 93%, prompting global multicenter phase 2 trials and the first FDA approval of a CAR T-cell therapy. Insights into cytokine release syndrome, a toxicity of CAR T-cell therapy, and the cause for relapse after CAR T-cell therapy are evolving. The bispecific antibody blinatumomab and the ADCs inotuzumab and gemtuzumab have also recently received FDA approval for ALL and AML, respectively, moving these agents into a more prominent role in the relapse setting. SUMMARY: The use of immunotherapy for leukemia has been successful in creating durable remissions for multiply relapsed and refractory patients who previously had little chance of cure. The ongoing clinical and preclinical work continues to advance our understanding of these immune-based therapies, and will shape the next generation of clinical trials.
Asunto(s)
Inmunoterapia/métodos , Leucemia/terapia , Anticuerpos/uso terapéutico , Antineoplásicos/uso terapéutico , Niño , Ensayos Clínicos como Asunto , Humanos , Inmunoterapia/tendencias , Leucemia/inmunologíaRESUMEN
INTRODUCTION: Proteasome inhibitors have garnered interest as novel chemotherapeutic agents based on their ability to inhibit the growth of cancer cells by altering the balance of intracellular proteins. Initial clinical trials of this drug class focused on bortezomib, a reversible inhibitor of the 20S proteasome, with promising results for the treatment of adult hematologic malignancies, including multiple myeloma and non-Hodgkin lymphoma. AREAS COVERED: This article will review the use of bortezomib and other proteasome inhibitors in both adult and pediatric populations, with a focus on their use in pediatrics. Expert commentary: Bortezomib moved into the pediatric oncology arena with encouraging results in multiple early phase trials for relapsed acute lymphoblastic leukemia and acute myeloid leukemia. Bortezomib is also being studied in the treatment of non-malignant disorders, including antibody-mediated allograft rejection, graft-versus-host disease, and autoimmune cytopenias. The numerous applications of bortezomib have inspired the development of second-generation proteasome inhibitors.