Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 119(4): 969-981, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36537208

RESUMEN

AIMS: Neutrophil extracellular trap formation (NETosis) increases atherosclerotic plaque vulnerability and athero-thrombosis. However, mechanisms promoting NETosis during atherogenesis are poorly understood. We have shown that cholesterol accumulation due to myeloid cell deficiency of the cholesterol transporters ATP Binding Cassette A1 and G1 (ABCA1/G1) promotes NLRP3 inflammasome activation in macrophages and neutrophils and induces prominent NETosis in atherosclerotic plaques. We investigated whether NETosis is a cell-intrinsic effect in neutrophils or is mediated indirectly by cellular crosstalk from macrophages to neutrophils involving IL-1ß. METHODS AND RESULTS: We generated mice with neutrophil or macrophage-specific Abca1/g1 deficiency (S100A8CreAbca1fl/flAbcg1fl/fl or CX3CR1CreAbca1fl/flAbcg1fl/fl mice, respectively), and transplanted their bone marrow into low-density lipoprotein receptor knockout mice. We then fed the mice a cholesterol-rich diet. Macrophage, but not neutrophil Abca1/g1 deficiency activated inflammasomes in macrophages and neutrophils, reflected by caspase-1 cleavage, and induced NETosis in plaques. NETosis was suppressed by administering an interleukin (IL)-1ß neutralizing antibody. The extent of NETosis in plaques correlated strongly with the degree of neutrophil accumulation, irrespective of blood neutrophil counts, and neutrophil accumulation was decreased by IL-1ß antagonism. In vitro, IL-1ß or media transferred from Abca1/g1-deficient macrophages increased NETosis in both control and Abca1/Abcg1 deficient neutrophils. This cell-extrinsic effect of IL-1ß on NETosis was blocked by an NLRP3 inhibitor. CONCLUSION: These studies establish a new link between inflammasome-mediated IL-1ß production in macrophages and NETosis in atherosclerotic plaques. Macrophage-derived IL-1ß appears to increase NETosis both by increasing neutrophil recruitment to plaques and by promoting neutrophil NLRP3 inflammasome activation.


Asunto(s)
Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Ratones Noqueados
2.
J Hepatol ; 76(2): 383-393, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600974

RESUMEN

BACKGROUND & AIMS: Molecular mechanisms underlying the different susceptibility of men and women to non-alcoholic fatty liver disease (NAFLD) are poorly understood. The TTC39B locus encodes a scaffolding protein, associates with gynecological disorders and its deletion protects mice from diet-induced steatohepatitis. This study aimed to elucidate the molecular mechanisms linking TTC39B (T39) to the expression of lipogenic genes and to explore sex-specific effects. METHODS: Co-expression in HEK293A cells validated the novel T39/pRb interaction predicted by a protein-protein interaction algorithm. T39 was knocked down using an antisense oligonucleotide (ASO) in mice with dietary NAFLD and a genetic deficiency of pRb or its downstream effector E2F1, as well as in primary human hepatocytes. RESULTS: T39 interacts with pRb via its C-terminal TPR domain and promotes its proteasomal degradation. In female mice, T39 deficiency reduces the mRNA of lipogenic genes, especially Pnpla3, in a pRb- and E2F1-dependent manner. In contrast, in male mice, T39 deficiency results in a much smaller reduction in lipogenic gene expression that is independent of pRb/E2F1. T39 also interacts with VAPB via an N-terminal FFAT motif and stabilizes the interaction of VAPB with SCAP. Ovariectomy abolishes the effect of T39 knockdown on the hepatic pRb/E2F1/Pnpla3 axis. In both sexes T39 knockdown reduces SCAP independently of pRb. In primary human hepatocytes, T39 knockdown reduces expression of PNPLA3 and other lipogenic genes in women but not men. CONCLUSIONS: We have uncovered a conserved sexual dimorphism in the regulation of hepatic lipogenic genes, with effects of T39 mediated through pRb/E2F1 in females and VAPB/SCAP in both sexes. T39 inhibition could be a novel strategy to downregulate PNPLA3 and treat NAFLD in women. LAY SUMMARY: In females, the protein TTC39B degrades a tumor suppressor in the liver to promote the synthesis of new fat and the expression of a major genetic risk factor for non-alcoholic fatty liver disease. TTC39B is a potential therapeutic target for non-alcoholic fatty liver disease, especially in women.


Asunto(s)
Lipoproteínas HDL/efectos adversos , Proteínas de Neoplasias/efectos adversos , Proteína de Retinoblastoma/efectos de los fármacos , Factores Sexuales , Animales , Modelos Animales de Enfermedad , Expresión Génica/genética , Expresión Génica/fisiología , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Ratones , Ratones Endogámicos C57BL/metabolismo
3.
Metabolism ; 127: 154954, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34875308

RESUMEN

INTRODUCTION: Atherosclerotic Coronary Artery Disease (ASCAD) is the leading cause of mortality worldwide. Novel therapeutic approaches aiming to improve the atheroprotective functions of High Density Lipoprotein (HDL) include the use of reconstituted HDL forms containing human apolipoprotein A-I (rHDL-apoA-I). Given the strong atheroprotective properties of apolipoprotein E3 (apoE3), rHDL-apoE3 may represent an attractive yet largely unexplored therapeutic agent. OBJECTIVE: To evaluate the atheroprotective potential of rHDL-apoE3 starting with the unbiased assessment of global transcriptome effects and focusing on endothelial cell (EC) migration as a critical process in re-endothelialization and atherosclerosis prevention. The cellular, molecular and functional effects of rHDL-apoE3 on EC migration-associated pathways were assessed, as well as the potential translatability of these findings in vivo. METHODS: Human Aortic ECs (HAEC) were treated with rHDL-apoE3 and total RNA was analyzed by whole genome microarrays. Expression and phosphorylation changes of key EC migration-associated molecules were validated by qRT-PCR and Western blot analysis in primary HAEC, Human Coronary Artery ECs (HCAEC) and the human EA.hy926 EC line. The capacity of rHDL-apoE3 to stimulate EC migration was assessed by wound healing and transwell migration assays. The contribution of MEK1/2, PI3K and the transcription factor ID1 in rHDL-apoE3-induced EC migration and activation of EC migration-related effectors was assessed using specific inhibitors (PD98059: MEK1/2, LY294002: PI3K) and siRNA-mediated gene silencing, respectively. The capacity of rHDL-apoE3 to improve vascular permeability and hypercholesterolemia in vivo was tested in a mouse model of hypercholesterolemia (apoE KO mice) using Evans Blue assays and lipid/lipoprotein analysis in the serum, respectively. RESULTS: rHDL-apoE3 induced significant expression changes in 198 genes of HAEC mainly involved in re-endothelialization and atherosclerosis-associated functions. The most pronounced effect was observed for EC migration, with 42/198 genes being involved in the following EC migration-related pathways: 1) MEK/ERK, 2) PI3K/AKT/eNOS-MMP2/9, 3) RHO-GTPases, 4) integrin. rHDL-apoE3 induced changes in 24 representative transcripts of these pathways in HAEC, increasing the expression of their key proteins PIK3CG, EFNB2, ID1 and FLT1 in HCAEC and EA.hy926 cells. In addition, rHDL-apoE3 stimulated migration of HCAEC and EA.hy926 cells, and the migration was markedly attenuated in the presence of PD98059 or LY294002. rHDL-apoE3 also increased the phosphorylation of ERK1/2, AKT, eNOS and p38 MAPK in these cells, while PD98059 and LY294002 inhibited rHDL-apoE3-induced phosphorylation of ERK1/2, AKT and p38 MAPK, respectively. LY had no effect on rHDL-apoE3-mediated eNOS phosphorylation. ID1 siRNA markedly decreased EA.hy926 cell migration by inhibiting rHDL-apoE3-triggered ERK1/2 and AKT phosphorylation. Finally, administration of a single dose of rHDL-apoE3 in apoE KO mice markedly improved vascular permeability as demonstrated by the reduced concentration of Evans Blue dye in tissues such as the stomach, the tongue and the urinary bladder and ameliorated hypercholesterolemia. CONCLUSIONS: rHDL-apoE3 significantly enhanced EC migration in vitro, predominantly via overexpression of ID1 and subsequent activation of MEK1/2 and PI3K, and their downstream targets ERK1/2, AKT and p38 MAPK, respectively, and improved vascular permeability in vivo. These novel insights into the rHDL-apoE3 functions suggest a potential clinical use to promote re-endothelialization and retard development of atherosclerosis.


Asunto(s)
Apolipoproteína E3/farmacología , Células Endoteliales/efectos de los fármacos , Lipoproteínas HDL/farmacología , Animales , Apolipoproteína E3/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/fisiología , Humanos , Proteína 1 Inhibidora de la Diferenciación/antagonistas & inhibidores , Proteína 1 Inhibidora de la Diferenciación/efectos de los fármacos , Proteína 1 Inhibidora de la Diferenciación/genética , Lipoproteínas HDL/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 39(12): e253-e272, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31578081

RESUMEN

OBJECTIVE: HDL (high-density lipoprotein) infusion reduces atherosclerosis in animal models and is being evaluated as a treatment in humans. Studies have shown either anti- or proinflammatory effects of HDL in macrophages, and there is no consensus on the underlying mechanisms. Here, we interrogate the effects of HDL on inflammatory gene expression in macrophages. Approach and Results: We cultured bone marrow-derived macrophages, treated them with reconstituted HDL or HDL isolated from APOA1Tg;Ldlr-/- mice, and challenged them with lipopolysaccharide. Transcriptional profiling showed that HDL exerts a broad anti-inflammatory effect on lipopolysaccharide-induced genes and proinflammatory effect in a subset of genes enriched for chemokines. Cholesterol removal by POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) liposomes or ß-methylcyclodextrin mimicked both pro- and anti-inflammatory effects of HDL, whereas cholesterol loading by POPC/cholesterol-liposomes or acetylated LDL (low-density lipoprotein) before HDL attenuated these effects, indicating that these responses are mediated by cholesterol efflux. While early anti-inflammatory effects reflect reduced TLR (Toll-like receptor) 4 levels, late anti-inflammatory effects are due to reduced IFN (interferon) receptor signaling. Proinflammatory effects occur late and represent a modified endoplasmic reticulum stress response, mediated by IRE1a (inositol-requiring enzyme 1a)/ASK1 (apoptosis signal-regulating kinase 1)/p38 MAPK (p38 mitogen-activated protein kinase) signaling, that occurs under conditions of extreme cholesterol depletion. To investigate the effects of HDL on inflammatory gene expression in myeloid cells in atherosclerotic lesions, we injected reconstituted HDL into Apoe-/- or Ldlr-/- mice fed a Western-type diet. Reconstituted HDL infusions produced anti-inflammatory effects in lesion macrophages without any evidence of proinflammatory effects. CONCLUSIONS: Reconstituted HDL infusions in hypercholesterolemic atherosclerotic mice produced anti-inflammatory effects in lesion macrophages suggesting a beneficial therapeutic effect of HDL in vivo.


Asunto(s)
Aorta Torácica/patología , Proteínas Portadoras/genética , Regulación de la Expresión Génica , Inflamación/genética , Lipoproteínas HDL/farmacología , Macrófagos/metabolismo , Placa Aterosclerótica/genética , Animales , Aorta Torácica/metabolismo , Proteínas Portadoras/biosíntesis , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Immunoblotting , Inflamación/metabolismo , Inflamación/patología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Proteínas Recombinantes
6.
Cell Rep ; 25(13): 3774-3785.e4, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30590048

RESUMEN

The activation of liver X receptor (LXR) promotes cholesterol efflux and repression of inflammatory genes with anti-atherogenic consequences. The mechanisms underlying the repressive activity of LXR are controversial and have been attributed to cholesterol efflux or to transrepression of activator protein-1 (AP-1) activity. Here, we find that cholesterol efflux contributes to LXR repression, while the direct repressive functions of LXR also play a key role but are independent of AP-1. We use assay for transposase-accessible chromatin using sequencing (ATAC-seq) to show that LXR reduces chromatin accessibility in cis at inflammatory gene enhancers containing LXR binding sites. Targets of this repressive activity are associated with leukocyte adhesion and neutrophil migration, and LXR agonist treatment suppresses neutrophil recruitment in a mouse model of sterile peritonitis. These studies suggest a model of repression in which liganded LXR binds in cis to canonical nuclear receptor binding sites and represses pro-atherogenic leukocyte functions in tandem with the induction of LXR targets mediating cholesterol efflux.


Asunto(s)
Movimiento Celular/genética , Colesterol/metabolismo , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/patología , Receptores X del Hígado/metabolismo , Neutrófilos/patología , Animales , Secuencia de Bases , Transporte Biológico , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Receptores X del Hígado/agonistas , Ratones Endogámicos C57BL , Neutrófilos/metabolismo
7.
Metabolism ; 87: 36-47, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29928895

RESUMEN

BACKGROUND: High Density Lipoprotein (HDL) and its main protein component, apolipoprotein A-I (apoA-I), have numerous atheroprotective functions on various tissues including the endothelium. Therapies based on reconstituted HDL containing apoA-I (rHDL-apoA-I) have been used successfully in patients with acute coronary syndrome, peripheral vascular disease or diabetes but very little is known about the genomic effects of rHDL-apoA-I and how they could contribute to atheroprotection. OBJECTIVE: The present study aimed to understand the endothelial signaling pathways and the genes that may contribute to rHDL-apoA-I-mediated atheroprotection. METHODS: Human aortic endothelial cells (HAECs) were treated with rHDL-apoA-I and their total RNA was analyzed with whole genome microarrays. Validation of microarray data was performed using multiplex RT-qPCR. The expression of ANGPTL4 in EA.hy926 endothelial cells was determined by RT-qPCR and Western blotting. The contribution of signaling kinases and transcription factors in ANGPTL4 gene regulation by HDL-apoA-I was assessed by RT-qPCR, Western blotting and immunofluorescence using chemical inhibitors or siRNA-mediated gene silencing. RESULTS: It was found that 410 transcripts were significantly changed in the presence of rHDL-apoA-I and that angiopoietin like 4 (ANGPTL4) was one of the most upregulated and biologically relevant molecules. In validation experiments rHDL-apoA-I, as well as natural HDL from human healthy donors or from transgenic mice overexpressing human apoA-I (TgHDL-apoA-I), increased ANGPTL4 mRNA and protein levels. ANGPTL4 gene induction by HDL was direct and was blocked in the presence of inhibitors for the AKT or the p38 MAP kinases. TgHDL-apoA-I caused phosphorylation of the transcription factor forkhead box O1 (FOXO1) and its translocation from the nucleus to the cytoplasm. Importantly, a FOXO1 inhibitor or a FOXO1-specific siRNA enhanced ANGPTL4 expression, whereas administration of TgHDL-apoA-I in the presence of the FOXO1 inhibitor or the FOXO1-specific siRNA did not induce further ANGPTL4 expression. These data suggest that FOXO1 functions as an inhibitor of ANGPTL4, while HDL-apoA-I blocks FOXO1 activity and induces ANGPTL4 through the activation of AKT. CONCLUSION: Our data provide novel insights into the global molecular effects of HDL-apoA-I on endothelial cells and identify ANGPTL4 as a putative mediator of the atheroprotective functions of HDL-apoA-I on the artery wall, with notable therapeutic potential.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/biosíntesis , Apolipoproteína A-I/farmacología , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipoproteínas HDL/farmacología , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 4 Similar a la Angiopoyetina/efectos de los fármacos , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Proteína Forkhead Box O1/efectos de los fármacos , Proteína Forkhead Box O1/genética , Expresión Génica/efectos de los fármacos , Silenciador del Gen , Voluntarios Sanos , Humanos , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Proteína Oncogénica v-akt/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/farmacología
8.
Circulation ; 138(9): 898-912, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-29588315

RESUMEN

BACKGROUND: The CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) showed that antagonism of interleukin (IL)-1ß reduces coronary heart disease in patients with a previous myocardial infarction and evidence of systemic inflammation, indicating that pathways required for IL-1ß secretion increase cardiovascular risk. IL-1ß and IL-18 are produced via the NLRP3 inflammasome in myeloid cells in response to cholesterol accumulation, but mechanisms linking NLRP3 inflammasome activation to atherogenesis are unclear. The cholesterol transporters ATP binding cassette A1 and G1 (ABCA1/G1) mediate cholesterol efflux to high-density lipoprotein, and Abca1/g1 deficiency in myeloid cells leads to cholesterol accumulation. METHODS: To interrogate mechanisms connecting inflammasome activation with atherogenesis, we used mice with myeloid Abca1/g1 deficiency and concomitant deficiency of the inflammasome components Nlrp3 or Caspase-1/11. Bone marrow from these mice was transplanted into Ldlr-/- recipients, which were fed a Western-type diet. RESULTS: Myeloid Abca1/g1 deficiency increased plasma IL-18 levels in Ldlr-/- mice and induced IL-1ß and IL-18 secretion in splenocytes, which was reversed by Nlrp3 or Caspase-1/11 deficiency, indicating activation of the NLRP3 inflammasome. Nlrp3 or Caspase-1/11 deficiency decreased atherosclerotic lesion size in myeloid Abca1/g1-deficient Ldlr-/- mice. Myeloid Abca1/g1 deficiency enhanced caspase-1 cleavage not only in splenic monocytes and macrophages, but also in neutrophils, and dramatically enhanced neutrophil accumulation and neutrophil extracellular trap formation in atherosclerotic plaques, with reversal by Nlrp3 or Caspase-1/11 deficiency, suggesting that inflammasome activation promotes neutrophil recruitment and neutrophil extracellular trap formation in atherosclerotic plaques. These effects appeared to be indirectly mediated by systemic inflammation leading to activation and accumulation of neutrophils in plaques. Myeloid Abca1/g1 deficiency also activated the noncanonical inflammasome, causing increased susceptibility to lipopolysaccharide-induced mortality. Patients with Tangier disease, who carry loss-of-function mutations in ABCA1 and have increased myeloid cholesterol content, showed a marked increase in plasma IL-1ß and IL-18 levels. CONCLUSIONS: Cholesterol accumulation in myeloid cells activates the NLRP3 inflammasome, which enhances neutrophil accumulation and neutrophil extracellular trap formation in atherosclerotic plaques. Patients with Tangier disease, who have increased myeloid cholesterol content, showed markers of inflammasome activation, suggesting human relevance.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Aterosclerosis/prevención & control , Colesterol/metabolismo , Trampas Extracelulares/metabolismo , Inflamasomas/metabolismo , Inflamación/prevención & control , Células Mieloides/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transportador 1 de Casete de Unión a ATP/deficiencia , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/deficiencia , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Estudios de Casos y Controles , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasas/genética , Caspasas/metabolismo , Caspasas Iniciadoras , Citocinas/sangre , Modelos Animales de Enfermedad , Humanos , Inflamasomas/deficiencia , Inflamasomas/genética , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones Noqueados , Células Mieloides/patología , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Placa Aterosclerótica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Bazo/metabolismo , Enfermedad de Tangier/sangre , Enfermedad de Tangier/genética
9.
J Biomed Res ; 2017 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-29109329

RESUMEN

In this review, we focus on the pathway of biogenesis of HDL, the essential role of apoA-I, ATP binding cassette transporter A1 (ABCA1), and lecithin: cholesterol acyltransferase (LCAT) in the formation of plasma HDL; the generation of aberrant forms of HDL containing mutant apoA-I forms and the role of apoA-IV and apoE in the formation of distinct HDL subpopulations. The biogenesis of HDL requires functional interactions of the ABCA1 with apoA-I (and to a lesser extent with apoE and apoA-IV) and subsequent interactions of the nascent HDL species thus formed with LCAT. Mutations in apoA-I, ABCA1 and LCAT either prevent or impair the formation of HDL and may also affect the functionality of the HDL species formed. Emphasis is placed on three categories of apoA-I mutations. The first category describes a unique bio-engineered apoA-I mutation that disrupts interactions between apoA-I and ABCA1 and generates aberrant preß HDL subpopulations that cannot be converted efficiently to α subpopulations by LCAT. The second category describes natural and bio-engineered apoA-I mutations that generate preß and small size α4 HDL subpopulations, and are associated with low plasma HDL levels. These phenotypes can be corrected by excess LCAT. The third category describes bio-engineered apoA-I mutations that induce hypertriglyceridemia that can be corrected by excess lipoprotein lipase and also have defective maturation of HDL. The HDL phenotypes described here may serve in the future for diagnosis, prognoses and potential treatment of abnormalities that affect the biogenesis and functionality of HDL.

10.
Lipids ; 52(12): 991-998, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29094255

RESUMEN

Lipid core nanoparticles (LDE) resembling LDL behave similarly to native LDL when injected in animals or subjects. In contact with plasma, LDE acquires apolipoproteins (apo) E, A-I and C and bind to LDL receptors. LDE can be used to explore LDL metabolism or as a vehicle of drugs directed against tumoral or atherosclerotic sites. The aim was to investigate in knockout (KO) and transgenic mice the plasma clearance and tissue uptake of LDE labeled with 3H-cholesteryl ether. LDE clearance was lower in LDLR KO and apoE KO mice than in wild type (WT) mice (p < 0.05). However, infusion of human apoE3 into the apoE KO mice increased LDE clearance. LDE clearance was higher in apoA-I KO than in WT. In apoA-I transgenic mice, LDE clearance was lower than in apoA-I KO and than in apoA-I KO infusion with human HDL. Infusion of human HDL into the apoA-I KO mice resulted in higher LDE clearance than in the apoA-I transgenic mice (p < 0.05). In apoA-I KO and apoA-I KO infused human HDL, the liver uptake was greater than in WT animals and apoA-I transgenic animals (p < 0.05). LDE clearance was lower in apoE/A-I KO than in WT. Infusion of human HDL increased LDE clearance in those double KO mice. No difference among the groups in LDE uptake by the tissues occurred. In conclusion, results support LDLR and apoE as the key players for LDE clearance, apoA-I also influences those processes.


Asunto(s)
Apolipoproteínas E/genética , Lípidos/sangre , Receptores de LDL/genética , Animales , Línea Celular , Humanos , Lipoproteínas HDL/administración & dosificación , Ratones , Ratones Noqueados , Ratones Transgénicos
11.
Cell Metab ; 25(6): 1294-1304.e6, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28479366

RESUMEN

Autoimmune diseases such as systemic lupus erythematosus (SLE) are associated with increased cardiovascular disease and reduced plasma high-density lipoprotein (HDL) levels. HDL mediates cholesterol efflux from immune cells via the ATP binding cassette transporters A1 and G1 (ABCA1/G1). The significance of impaired cholesterol efflux pathways in autoimmunity is unknown. We observed that Abca1/g1-deficient mice develop enlarged lymph nodes (LNs) and glomerulonephritis suggestive of SLE. This lupus-like phenotype was recapitulated in mice with knockouts of Abca1/g1 in dendritic cells (DCs), but not in macrophages or T cells. DC-Abca1/g1 deficiency increased LN and splenic CD11b+ DCs, which displayed cholesterol accumulation and inflammasome activation, increased cell surface levels of the granulocyte macrophage-colony stimulating factor receptor, and enhanced inflammatory cytokine secretion. Consequently, DC-Abca1/g1 deficiency enhanced T cell activation and Th1 and Th17 cell polarization. Nlrp3 inflammasome deficiency diminished the enlarged LNs and enhanced Th1 cell polarization. These findings identify an essential role of DC cholesterol efflux pathways in maintaining immune tolerance.


Asunto(s)
Inmunidad Adaptativa , Colesterol/inmunología , Células Dendríticas/inmunología , Inflamasomas/inmunología , Células TH1/inmunología , Células Th17/inmunología , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/inmunología , Animales , Colesterol/genética , Tolerancia Inmunológica , Inflamasomas/genética , Ratones , Ratones Noqueados
12.
Arterioscler Thromb Vasc Biol ; 36(7): 1328-37, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27199450

RESUMEN

OBJECTIVE: Plasma high-density lipoproteins have several putative antiatherogenic effects, including preservation of endothelial functions. This is thought to be mediated, in part, by the ability of high-density lipoproteins to promote cholesterol efflux from endothelial cells (ECs). The ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) interact with high-density lipoproteins to promote cholesterol efflux from ECs. To determine the impact of endothelial cholesterol efflux pathways on atherogenesis, we prepared mice with endothelium-specific knockout of Abca1 and Abcg1. APPROACH AND RESULTS: Generation of mice with EC-ABCA1 and ABCG1 deficiency required crossbreeding Abca1(fl/fl)Abcg1(fl/fl)Ldlr(-/-) mice with the Tie2Cre strain, followed by irradiation and transplantation of Abca1(fl/fl)Abcg1(fl/fl) bone marrow to abrogate the effects of macrophage ABCA1 and ABCG1 deficiency induced by Tie2Cre. After 20 to 22 weeks of Western-type diet, both single EC-Abca1 and Abcg1 deficiency increased atherosclerosis in the aortic root and whole aorta. Combined EC-Abca1/g1 deficiency caused a significant further increase in lesion area at both sites. EC-Abca1/g1 deficiency dramatically enhanced macrophage lipid accumulation in the branches of the aorta that are exposed to disturbed blood flow, decreased aortic endothelial NO synthase activity, and increased monocyte infiltration into the atherosclerotic plaque. Abca1/g1 deficiency enhanced lipopolysaccharide-induced inflammatory gene expression in mouse aortic ECs, which was recapitulated by ABCG1 deficiency in human aortic ECs. CONCLUSIONS: These studies provide direct evidence that endothelial cholesterol efflux pathways mediated by ABCA1 and ABCG1 are nonredundant and atheroprotective, reflecting preservation of endothelial NO synthase activity and suppression of endothelial inflammation, especially in regions of disturbed arterial blood flow.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/deficiencia , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/deficiencia , Aorta Torácica/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Células Endoteliales/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Animales , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Trasplante de Médula Ósea , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/patología , Predisposición Genética a la Enfermedad , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Noqueados , Monocitos/metabolismo , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenotipo , Placa Aterosclerótica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Flujo Sanguíneo Regional , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Irradiación Corporal Total
13.
Atherosclerosis ; 243(1): 77-85, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26363436

RESUMEN

OBJECTIVE: Mutations in human apolipoprotein A-I (apoA-I) are associated with low high-density lipoprotein (HDL) cholesterol levels and pathological conditions such as premature atherosclerosis and amyloidosis. In this study we functionally characterized two natural human apoA-I mutations, L141RPisa and L159RFIN, in vivo. METHODS: We generated transgenic mice expressing either wild-type (WT) or the two mutant forms of human apoA-I on a mouse apoA-I(-/-) background and analyzed for abnormalities in their lipid and lipoprotein profiles. HDL structure and functionality, as well as atherosclerosis development following a 14-week high-fat diet were assessed in these mice. RESULTS: The expression of either apoA-I mutant was associated with markedly reduced serum apoA-I (<10% of WT apoA-I), total and HDL-cholesterol levels (∼20% and ∼7% of WT apoA-I, respectively) and the formation of few small size HDL particles with preß2 and α3, α4 electrophoretic mobility. HDL particles containing either of the two apoA-I mutants exhibited attenuated anti-oxidative properties as indicated by their inability to prevent low-density lipoprotein oxidation, and by decreased activities of paraoxonase-1 and platelet-activating factor acetylhydrolase. However, the apoA-I(L141R)Pisa or apoA-I(L159R)FIN-containing HDL particles demonstrated increased capacity to promote ATP-Binding Cassette Transporter A1-mediated cholesterol efflux from macrophages. Expression of apoA-I(L141R)Pisa or apoA-I(L159R)FIN mutations in mice was associated with increased diet-induced atherosclerosis compared to either WT apoA-I transgenic or apoA-I(-/-) mice. CONCLUSIONS: These findings suggest that natural apoA-I mutations L141RPisa and L159RFIN affect the biogenesis and the functionality of HDL in vivo and predispose to diet-induced atherosclerosis in the absence of any other genetic defect.


Asunto(s)
Apolipoproteína A-I/genética , Aterosclerosis/sangre , Lipoproteínas HDL/sangre , Lipoproteínas LDL/genética , Mutación , Transportador 1 de Casete de Unión a ATP/metabolismo , Alimentación Animal , Animales , Antioxidantes/química , Arildialquilfosfatasa/metabolismo , Electroforesis en Gel Bidimensional , Humanos , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Activación Plaquetaria/metabolismo
14.
Biochemistry ; 54(21): 3348-59, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25948084

RESUMEN

We have investigated how the natural LCAT[T147I] and LCAT[P274S] mutations affect the pathway of biogenesis of HDL. Gene transfer of WT LCAT in LCAT(-/-) mice increased 11.8-fold the plasma cholesterol, whereas the LCAT[T147I] and LCAT[P274S] mutants caused a 5.2- and 2.9-fold increase, respectively. The LCAT[P274S] and the WT LCAT caused a monophasic distribution of cholesterol in the HDL region, whereas the LCAT[T147I] caused a biphasic distribution of cholesterol in the LDL and HDL region. Fractionation of plasma showed that the expression of WT LCAT increased plasma apoE and apoA-IV levels and shifted the distribution of apoA-I to lower densities. The LCAT[T147I] and LCAT[P274S] mutants restored partially apoA-I in the HDL3 fraction and LCAT[T147I] increased apoE in the VLD/IDL/LDL fractions. The in vivo functionality of LCAT was further assessed based on is its ability to correct the aberrant HDL phenotype that was caused by the apoA-I[L159R]FIN mutation. Co-infection of apoA-I(-/-) mice with this apoA-I mutant and either of the two mutant LCAT forms restored only partially the HDL biogenesis defect that was caused by the apoA-I[L159R]FIN and generated a distinct aberrant HDL phenotype.


Asunto(s)
Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Mutación Puntual , Animales , Apolipoproteína A-I/sangre , Apolipoproteína A-I/metabolismo , Apolipoproteínas A/sangre , Apolipoproteínas A/metabolismo , Apolipoproteínas E/sangre , Apolipoproteínas E/metabolismo , Línea Celular , Colesterol/sangre , Humanos , Lípidos/sangre , Lipoproteínas HDL/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Handb Exp Pharmacol ; 224: 53-111, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25522986

RESUMEN

In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.


Asunto(s)
Lipoproteínas HDL/metabolismo , Animales , Biomarcadores/metabolismo , Humanos , Metabolismo de los Lípidos , Lipoproteínas HDL/biosíntesis , Lipoproteínas HDL/sangre , Lipoproteínas HDL/química , Lipoproteínas HDL/clasificación , Conformación Proteica , Relación Estructura-Actividad
16.
J Lipid Res ; 55(7): 1310-23, 2014 07.
Artículo en Inglés | MEDLINE | ID: mdl-24776540

RESUMEN

The K146N/R147W substitutions in apoE3 were described in patients with a dominant form of type III hyperlipoproteinemia. The effects of these mutations on the in vivo functions of apoE were studied by adenovirus-mediated gene transfer in different mouse models. Expression of the apoE3[K146N/R147W] mutant in apoE-deficient (apoE(-/-)) or apoA-I-deficient (apoA-I(-/-))×apoE(-/-) mice exacerbated the hypercholesterolemia and increased plasma apoE and triglyceride levels. In apoE(-/-) mice, the apoE3[K146N/R147W] mutant displaced apoA-I from the VLDL/LDL/HDL region and caused the accumulation of discoidal apoE-containing HDL. The WT apoE3 cleared the cholesterol of apoE(-/-) mice without induction of hypertriglyceridemia and promoted formation of spherical HDL. A unique property of the truncated apoE3[K146N/R147W]202 mutant, compared with similarly truncated apoE forms, is that it did not correct the hypercholesterolemia. The contribution of LPL and LCAT in the induction of the dyslipidemia was studied. Treatment of apoE(-/-) mice with apoE3[K146N/R147W] and LPL corrected the hypertriglyceridemia, but did not prevent the formation of discoidal HDL. Treatment with LCAT corrected hypertriglyceridemia and generated spherical HDL. The combined data indicate that the K146N/R147W substitutions convert the full-length and the truncated apoE3[K146N/R147W] mutant into a dominant negative ligand that prevents receptor-mediated remnant clearance, exacerbates the dyslipidemia, and inhibits the biogenesis of HDL.


Asunto(s)
Apolipoproteína E3/metabolismo , Lipoproteínas HDL/biosíntesis , Mutación Missense , Sustitución de Aminoácidos , Animales , Apolipoproteína E3/genética , Femenino , Hipertrigliceridemia/genética , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/patología , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Lipoproteínas HDL/genética , Masculino , Ratones , Ratones Noqueados , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo
17.
J Lipid Res ; 54(12): 3293-302, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24123812

RESUMEN

We studied the significance of four hydrophobic residues within the 225-230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I⁻/⁻ mice decreased plasma cholesterol, HDL cholesterol, and apoA-I levels. When expressed in apoA-I⁻/⁻ × apoE⁻/⁻ mice, approximately 40% of the mutant apoA-I as well as mouse apoA-IV and apoB-48 appeared in the VLDL/IDL/LDL. In both mouse models, the apoA-I mutant generated small spherical particles of pre-ß- and α4-HDL mobility. Coexpression of the apoA-I mutant and LCAT increased and shifted the-HDL cholesterol peak toward lower densities, created normal αHDL subpopulations, and generated spherical-HDL particles. Biophysical analyses suggested that the apoA-I[225-230] mutations led to a more compact folding that may limit the conformational flexibility of the protein. The mutations also reduced the ability of apoA-I to promote ABCA1-mediated cholesterol efflux and to activate LCAT to 31% and 66%, respectively, of the WT control. Overall, the apoA-I[225-230] mutations inhibited the biogenesis of-HDL and led to the accumulation of immature pre-ß- and α4-HDL particles, a phenotype that could be corrected by administration of LCAT.


Asunto(s)
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lipoproteínas HDL/biosíntesis , Adenoviridae/genética , Animales , Apolipoproteína A-I/sangre , Apolipoproteína A-I/genética , Fenómenos Químicos , Células HEK293 , Humanos , Ratones , Mutación
18.
J Lipid Res ; 54(12): 3281-92, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23990662

RESUMEN

We investigated the significance of hydrophobic and charged residues 218-226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I⁻/⁻ mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-ß- and α4-HDL particles. In apoA-I⁻/⁻ × apoE⁻/⁻ mice, the same mutant formed few discoidal and pre-ß-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I⁻/⁻ mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218-222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218-222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-ß particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.


Asunto(s)
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lipoproteínas HDL/biosíntesis , Adenoviridae/genética , Animales , Apolipoproteína A-I/sangre , Apolipoproteína A-I/genética , Línea Celular , Humanos , Lipoproteínas HDL/sangre , Ratones , Mutación , Estructura Secundaria de Proteína , Desplegamiento Proteico , Temperatura , Transgenes/genética
19.
J Lipid Res ; 54(1): 107-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23132909

RESUMEN

The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I(-/-) mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-ß-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I(-/-) × apoE(-/-) mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-ß-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1(-/-) or LCAT(-/-) mice. Coexpression of apoA-IV and LCAT in apoA-I(-/-) mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Apolipoproteínas A/metabolismo , Lipoproteínas HDL/biosíntesis , Lipoproteínas HDL/química , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Transportador 1 de Casete de Unión a ATP , Animales , Células HEK293 , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...