Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396586

RESUMEN

Microplastics (MPs) (0.1 µm-5 mm particles) have been documented in oceans and seas. Bivalve molluscs (BMs) can accumulate MPs and transfer to humans through the food chain. BMs (especially mussels) are used to assess MPs' contamination, but the genus Donax has not been thoroughly investigated. The aim of this study was to detect and characterize MPs in D. trunculus specimens collected along the Tuscan coast (Italy), and to assess the potential risk for consumers. The samples (~10 g of tissue and intervalval liquid from 35 specimens) were digested using a solution of 10% KOH, subjected to NaCl density separation, and filtered through 5 µm pore-size filters. All items were morphologically classified and measured, and their mean abundance (MA) was calculated. Furthermore, 20% of them were analyzed by Raman spectroscopy and, based on the obtained results, the MA was recalculated (corrected MA) and the annual human exposure was estimated. In the 39 samples analyzed, 85 items fibers (n = 45; 52.94%) and fragments (n = 40; 47.06%) were found. The MA was 0.23 ± 0.17 items/grww. Additionally, 83.33% of the items were confirmed as MPs (polyethylene and polyethylene terephthalate). Based on the correct MA (0.18 MPs/grww), D. trunculus consumers could be exposed to 19.2 MPs/per capita/year. The health risk level of MPs was classified as level III (moderate).

2.
ACS Photonics ; 10(9): 3223-3232, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37743937

RESUMEN

Microengines have shown promise for a variety of applications in nanotechnology, microfluidics, and nanomedicine, including targeted drug delivery, microscale pumping, and environmental remediation. However, achieving precise control over their dynamics remains a significant challenge. In this study, we introduce a microengine that exploits both optical and thermal effects to achieve a high degree of controllability. We find that in the presence of a strongly focused light beam, a gold-silica Janus particle becomes confined at the stationary point where the optical and thermal forces balance. By using circularly polarized light, we can transfer angular momentum to the particle, breaking the symmetry between the two forces and resulting in a tangential force that drives directed orbital motion. We can simultaneously control the velocity and direction of rotation of the particle changing the ellipticity of the incoming light beam while tuning the radius of the orbit with laser power. Our experimental results are validated using a geometrical optics phenomenological model that considers the optical force, the absorption of optical power, and the resulting heating of the particle. The demonstrated enhanced flexibility in the control of microengines opens up new possibilities for their utilization in a wide range of applications, including microscale transport, sensing, and actuation.

3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511387

RESUMEN

The formulation of eco-friendly biodegradable packaging has received great attention during the last decades as an alternative to traditional widespread petroleum-based food packaging. With this aim, we designed and tested the properties of polyhydroxyalkanoates (PHA)-based bioplastics functionalized with phloretin as far as antioxidant, antimicrobial, and morpho-mechanic features are concerned. Mechanical and hydrophilicity features investigations revealed a mild influence of phloretin on the novel materials as a function of the concentration utilized (5, 7.5, 10, and 20 mg) with variation in FTIR e RAMAN spectra as well as in mechanical properties. Functionalization of PHA-based polymers resulted in the acquisition of the antioxidant activity (in a dose-dependent manner) tested by DPPH, TEAC, FRAR, and chelating assays, and in a decrease in the growth of food-borne pathogens (Listeria monocytogenes ATCC 13932). Finally, apple samples were packed in the functionalized PHA films for 24, 48, and 72 h, observing remarkable effects on the stabilization of apple samples. The results open the possibility to utilize phloretin as a functionalizing agent for bioplastic formulation, especially in relation to food packaging.


Asunto(s)
Antiinfecciosos , Polihidroxialcanoatos , Embalaje de Alimentos/métodos , Antioxidantes/farmacología , Floretina/farmacología , Biopolímeros , Antiinfecciosos/farmacología
4.
Nano Lett ; 23(7): 2530-2535, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010197

RESUMEN

Surface-enhanced Raman optical activity (SEROA) has been extensively investigated due to its ability to directly probe stereochemistry and molecular structure. However, most works have focused on the Raman optical activity (ROA) effect arising from the chirality of the molecules on isotropic surfaces. Here, we propose a strategy for achieving a similar effect: i.e., a surface-enhanced Raman polarization rotation effect arising from the coupling of optically inactive molecules with the chiral plasmonic response of metasurfaces. This effect is due to the optically active response of metallic nanostructures and their interaction with molecules, which could extend the ROA potential to inactive molecules and be used to enhance the sensibility performances of surface-enhanced Raman spectroscopy. More importantly, this technique does not suffer from the heating issue present in traditional plasmonic-enhanced ROA techniques, as it does not rely on the chirality of the molecules.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35159798

RESUMEN

Tip-enhanced Raman spectroscopy (TERS) combines the high specificity and sensitivity of plasmon-enhanced Raman spectroscopy with the high spatial resolution of scanning probe microscopy. TERS has gained a lot of attention from many nanoscience fields, since this technique can provide chemical and structural information of surfaces and interfaces with nanometric spatial resolution. Multiwalled carbon nanotubes (MWCNTs) are very versatile nanostructures that can be dispersed in organic solvents or polymeric matrices, giving rise to new nanocomposite materials, showing improved mechanical, electrical and thermal properties. Moreover, MWCNTs can be easily functionalized with polymers in order to be employed as specific chemical sensors. In this context, TERS is strategic, since it can provide useful information on the cooperation of the two components at the nanoscale for the optimization of the macroscopic properties of the hybrid material. Nevertheless, efficient TERS characterization relies on the geometrical features and material composition of the plasmonic tip used. In this work, after comparing the TERS performance of commercial Ag coated nanotips and home-made bulk Au tips on bare MWCNTs, we show how TERS can be exploited for characterizing MWCNTs mixed with conjugated fluorene copolymers, thus contributing to the understanding of the polymer/CNT interaction process at the local scale.

6.
Sensors (Basel) ; 21(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669165

RESUMEN

The preparation and characterization of a hybrid composite, based on carbon cloth (CC) matrix functionalized with two-dimensional (2D) MoS2 flakes and MoO3, and its use for developing an electrochemical sensor for the determination of riboflavin (RF) is here reported. The 2D-MoS2-MoO3CC composite was prepared by depositing 2D-MoS2 nanosheets, obtained by liquid phase exfoliation (LPE), on the surface of a carbon cloth fiber network, previously functionalized with a layer of molybdenum oxide (α-MoO3) by radio-frequency magnetron reactive sputtering technique. The 2D-MoS2-MoO3CC composite was characterized by scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX), and Raman spectroscopy. An electrochemical sensor has been then fabricated by fixing a slice of the 2D-MoS2-MoO3CC composite on the working electrode of a screen-printed carbon electrode (SPCE). The 2D-MoS2-MoO3-CC/SPCE sensor display good electrochemical characteristics which have been exploited, for the first time, in the electroanalytical determination of riboflavin (RF). The sensitivity to RF, equal to 0.67 µA mM-1 in the linear range from 2 to 40 µM, and a limit of detection (LOD) of 1.5 µM at S/N = 3, demonstrate the promising characteristics of the proposed 2D-MoS2-MoO3-CC/SPCE electrochemical sensor for the determination of riboflavin.

7.
ACS Appl Mater Interfaces ; 13(6): 7324-7333, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33529012

RESUMEN

Carbon-based nanomaterials, such as carbon dots (CDs) and graphene (Gr), feature outstanding optical and electronic properties. Hence, their integration in optoelectronic and photonic devices is easier thanks to their low dimensionality and offers the possibility to reach high-quality performances. In this context, the combination of CDs and Gr into new nanocomposite materials CDs/Gr can further improve their optoelectronic properties and eventually create new ones, paving the way for the development of advanced carbon nanotechnology. In this work, we have thoroughly investigated the structural and emission properties of CDs deposited on single-layer and bilayer graphene lying on a SiO2/Si substrate. A systematic Raman analysis points out that bilayer (BL) graphene grown by chemical vapor deposition does not always respect the Bernal (AB) stacking, but it is rather a mixture of twisted bilayer (t-BL) featuring domains with different twist angles. Moreover, in-depth micro-photoluminescence measurements, combined with atomic force microscopy (AFM) morphological analysis, show that CD emission efficiency is strongly depleted by the presence of graphene and in particular is dependent on the number of layers as well as on the twist angle of BL graphene. Finally, we propose a model which explains these results on the basis of photoinduced charge-transfer processes, taking into account the energy levels of the hybrid nanosystem formed by coupling CDs with t-BL/SiO2.

8.
Adv Colloid Interface Sci ; 275: 102080, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31809990

RESUMEN

Printed organic electronics has attracted considerable interest in recent years as it enables the fabrication of large-scale, low-cost electronic devices, and thus offers significant possibilities in terms of developing new applications in various fields. Easy processing is a prerequisite for the development of low-cost, flexible and printed plastics electronics. Among processing techniques, meniscus guided coating methods are considered simple, efficient, and low-cost methods to fabricate electronic devices in industry. One of the major challenges is the control of thin film morphology, molecular orientations and directional alignment of polymer films during coating processes. Herein, the recent progress of emerging field of meniscus guided printing organic semiconductor materials is discussed. The first part of this report briefly summarizes recent advances in meniscus guided coating techniques. The second part discusses periodic deposits and patterned deposition at moving contact lines, where the mass-transport influences film morphology due to convection at the triple contact line. The last section summarizes our strategy to fabricate large-scale patterning of π-conjugated polymers using meniscus guided method.

9.
Beilstein J Nanotechnol ; 9: 2718-2729, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30416923

RESUMEN

Tip-enhanced Raman spectroscopy (TERS) has become a well-applied technique for nanospectroscopy, allowing for single molecule sensitivity with sub-nanometer spatial resolution. The demand for efficient, reproducible and cost-effective probes for TERS is increasing. Here we report on a new electrochemical etching protocol to fabricate TERS tips starting from 125 µm diameter gold wires in a reproducible way. The process is reliable (50% of the tips have radius of curvature <35 nm, 66% <80 nm), fast (less than 2 min) and 2.5 times cheaper than the etching of standard 250 µm diameter wires. The TERS performance of the tips is tested on dyes, pigments and biomolecules and enhancement factors higher than 105 are observed. TERS mapping with a spatial resolution of 5 nm is demonstrated.

10.
Small ; 14(36): e1800890, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30091859

RESUMEN

Highly toxic protein misfolded oligomers associated with neurological disorders such as Alzheimer's and Parkinson's diseases are nowadays considered primarily responsible for promoting synaptic failure and neuronal death. Unraveling the relationship between structure and neurotoxicity of protein oligomers appears pivotal in understanding the causes of the pathological process, as well as in designing novel diagnostic and therapeutic strategies tuned toward the earliest and presymptomatic stages of the disease. Here, it is benefited from tip-enhanced Raman spectroscopy (TERS) as a surface-sensitive tool with spatial resolution on the nanoscale, to inspect the spatial organization and surface character of individual protein oligomers from two samples formed by the same polypeptide sequence and different toxicity levels. TERS provides direct assignment of specific amino acid residues that are exposed to a large extent on the surface of toxic species and buried in nontoxic oligomers. These residues, thanks to their outward disposition, might represent structural factors driving the pathogenic behavior exhibited by protein misfolded oligomers, including affecting cell membrane integrity and specific signaling pathways in neurodegenerative conditions.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/toxicidad , Proteínas de Escherichia coli/toxicidad , Nanopartículas/química , Pliegue de Proteína , Multimerización de Proteína , Espectrometría Raman/métodos , Pliegue de Proteína/efectos de los fármacos
11.
Materials (Basel) ; 11(3)2018 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-29562606

RESUMEN

Optical forces are used to aggregate plasmonic nanoparticles and create SERS-active hot spots in liquid. When biomolecules are added to the nanoparticles, high sensitivity SERS detection can be accomplished. Here, we pursue studies on Bovine Serum Albumin (BSA) detection, investigating the BSA-nanorod aggregations in a range from 100 µM to 50 nM by combining light scattering, plasmon resonance and SERS, and correlating the SERS signal with the concentration. Experimental data are fitted with a simple model describing the optical aggregation process. We show that BSA-nanorod complexes can be optically printed on non-functionalized glass surfaces, designing custom patterns stable with time. Furthermore, we demonstrate that this methodology can be used to detect catalase and hemoglobin, two Raman resonant biomolecules, at concentrations of 10 nM and 1 pM, respectively, i.e., well beyond the limit of detection of BSA. Finally, we show that nanorods functionalized with specific aptamers can be used to capture and detect Ochratoxin A, a fungal toxin found in food commodities and wine. This experiment represents the first step towards the addition of molecular specificity to this novel biosensor strategy.

12.
ACS Appl Mater Interfaces ; 8(35): 23244-59, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27538099

RESUMEN

Improving the electrical and thermal properties of conductive adhesives is essential for the fabrication of compact microelectronic and optoelectronic power devices. Here we report on the addition of a commercially available conductive resin with double-wall carbon nanotubes and graphene nanoplatelets that yields simultaneously improved thermal and electrical conductivity. Using isopropanol as a common solvent for the debundling of nanotubes, exfoliation of graphene, and dispersion of the carbon nanostructures in the epoxy resin, we obtain a nanostructured conducting adhesive with thermal conductivity of ∼12 W/mK and resistivity down to 30 µΩ cm at very small loadings (1% w/w for nanotubes and 0.01% w/w for graphene). The low filler content allows one to keep almost unchanged the glass-transition temperature, the viscosity, and the curing parameters. Die shear measurements show that the nanostructured resins fulfill the MIL-STD-883 requirements when bonding gold-metalized SMD components, even after repeated thermal cycling. The same procedure has been validated on a high-conductivity resin characterized by a higher viscosity, on which we have doubled the thermal conductivity and quadrupled the electrical conductivity. Graphene yields better performances with respect to nanotubes in terms of conductivity and filler quantity needed to improve the resin. We have finally applied the nanostructured resins to bond GaN-based high-electron-mobility transistors in power-amplifier circuits. We observe a decrease of the GaN peak and average temperatures of, respectively, ∼30 °C and ∼10 °C, with respect to the pristine resin. The obtained results are important for the fabrication of advanced packaging materials in power electronic and microwave applications and fit the technological roadmap for CNTs, graphene, and hybrid systems.

13.
Sci Rep ; 6: 26952, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27246267

RESUMEN

Strategies for in-liquid molecular detection via Surface Enhanced Raman Scattering (SERS) are currently based on chemically-driven aggregation or optical trapping of metal nanoparticles in presence of the target molecules. Such strategies allow the formation of SERS-active clusters that efficiently embed the molecule at the "hot spots" of the nanoparticles and enhance its Raman scattering by orders of magnitude. Here we report on a novel scheme that exploits the radiation pressure to locally push gold nanorods and induce their aggregation in buffered solutions of biomolecules, achieving biomolecular SERS detection at almost neutral pH. The sensor is applied to detect non-resonant amino acids and proteins, namely Phenylalanine (Phe), Bovine Serum Albumin (BSA) and Lysozyme (Lys), reaching detection limits in the µg/mL range. Being a chemical free and contactless technique, our methodology is easy to implement, fast to operate, needs small sample volumes and has potential for integration in microfluidic circuits for biomarkers detection.


Asunto(s)
Técnicas Biosensibles , Oro/química , Muramidasa/análisis , Nanotubos/química , Fenilalanina/análisis , Albúmina Sérica Bovina/análisis , Espectrometría Raman/métodos , Animales , Bovinos , Pollos , Calefacción , Concentración de Iones de Hidrógeno , Límite de Detección , Nanopartículas del Metal , Nanotubos/ultraestructura , Soluciones , Espectrometría Raman/instrumentación
14.
ACS Appl Mater Interfaces ; 8(10): 6629-38, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26824254

RESUMEN

We report on the surface-enhanced Raman scattering (SERS) efficiency of self-organized arrays of Au nanocrescents confined on monolayers of polystyrene nanospheres. A dichroic SERS emission in the visible spectrum is observed due to the selective excitation of a localized surface plasmon (LSP) resonance along the "short axis" of the Au nanocrescents. Under these conditions SERS signal amplifications in the range of 10(3) have been observed with respect to a flat reference Au film. The far field and near field plasmonic response of Au nanocrescent arrays have been investigated as a function of the metal dose deposited onto the polymeric spheres. In this way, we show the possibility of simply tailoring the SERS emission by engineering the morphology of the plasmonic nanocrescents. We highlight the SERS activity of chains of satellite nanoclusters that decorate the border of each connected crescent and sustain isotropic high energy LSP resonances in the visible spectrum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...