Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(4): e25943, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384526

RESUMEN

Miscanthus x giganteus is often considered as a suitable plant species for phytomanagement of heavy metal polluted sites. Nevertheless, its physiological behavior in response to the level of metal toxicity throughout the growing season remains poorly documented. Miscanthus x giganteus was cultivated on three sites in Belgium (BSJ: non-polluted control; CAR: slightly contaminated; VM strongly polluted by Cd, Pb, Cu, Zn, Ni and As). The presence of Miscanthus improved soil biological parameters assessed by measurement of enzyme activity and basal soil respiration on the three considered sites, although to a lower level on VM site. Heavy metal accumulation in the shoot was already recorded in spring. It displayed a contrasting distribution in the summer leaves since heavy metals and As metalloid accumulated mainly in the older leaves of CAR plants while showing a uniform distribution among leaves of different ages in VM plants. Comparatively to plants growing on BSJ, net photosynthesis decreased in plants growing on CAR and VM sites. The recorded decrease was mainly related to stomatal factors in CAR plants (decrease in stomatal conductance and in Ci) but to non-stomatal factors such as decrease in carboxylation efficiency and non-photochemical quenching in VM plants. Stomata remained open in VM plants which presented lower instantaneous and intrinsic water use efficiencies than CAR and BSJ plants. High proportions of heavy metals accumulated in CAR plants were bound to the cell wall fraction while the soluble and organelle-rich fractions were proportionally higher in VM plants, leading to a decrease in cell viability and cell membrane damages. It is concluded that not only the intensity but also the nature of physiological responses in Miscanthus x giganteus may drastically differ depending on the pollution level.

2.
J Appl Microbiol ; 129(3): 637-651, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32181551

RESUMEN

AIMS: The objective of this work was to identify a fungal strain showing potential biocontrol abilities against two Fusarium damping-off agents and to test it as a Biological Control Agent (BCA) in maize seed coating under field conditions. METHODS AND RESULTS: A collection of native fungal strains associated with maize in Belgium was screened for antagonistic potential against Fusarium avenaceum and Fusarium culmorum. The strain with highest biocontrol potential was identified as an endophytic Trichoderma atroviride BC0584. In greenhouse, it significantly improves the emergence of seedlings infected by F. avenaceum or F. culmorum pathogens. In most field trials carried out during the season 2017, it significantly increased the emergence rate of infected seedlings compared to untreated seeds. One slurriable powder formulation allows BCA conidia to survive over a 6-month storage period at 4°C. CONCLUSIONS: The fungal BC0584 strain is a promising BCA that could be an alternative to synthetic fungicides. It is adapted to local environmental conditions, is easily and cheaply produced and can be stored in a low-cost formulation. SIGNIFICANCE AND IMPACT OF THE STUDY: In Belgium, this is the first study to use a T. atroviride native strain against Fusarium damping-off on maize crop. Modes of action and required conditions for ensuring high biocontrol activity in the field have still to be investigated.


Asunto(s)
Fusarium/patogenicidad , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/prevención & control , Trichoderma/fisiología , Zea mays/microbiología , Bélgica , Enfermedades de las Plantas/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Semillas/microbiología , Esporas Fúngicas/fisiología , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA