Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9122, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643238

RESUMEN

Accurately characterizing the thermomechanical parameters of nanoscale systems is essential for understanding their performance and building innovative nanoscale technologies due to their distinct behaviours. Fractional thermal transport models are commonly utilized to correctly depict the heat transfer that occurs in these nanoscale systems. The current study presents a novel mathematical thermoelastic model that incorporates a new fractional differential constitutive equation for heat conduction. This heat equation is useful for understanding the effects of thermal memory. An application of a fractional-time Atangana-Baleanu (AB) derivative with a local and non-singular kernel was utilized in the process of developing the mathematical model that was suggested. To deal with effects that depend on size, nonlocal constitutive relations are introduced. Furthermore, in order to take into consideration, the viscoelastic behaviour of the material at the nanoscale, the fractional Kelvin-Voigt model is utilized. The proposed model is highly effective in properly depicting the unusual thermal conductivity phenomena often found in nanoscale devices. The study also considered the mechanical deformation, temperature variations, and viscoelastic characteristics of the functionally graded (FG) nanostructured beams. The consideration was made that the material characteristics exhibit heterogeneity and continuous variation across the thickness of the beam as the nanobeam transitions from a ceramic composition in the lower region to a metallic composition in the upper region. The complicated thermomechanical features of simply supported viscoelastic nanobeams that were exposed to harmonic heat flow were determined by the application of the model that was constructed. Heterogeneity, nonlocality, and fractional operators are some of the important variables that contribute to its success, and this article provides a full study and illustration of the significance of these characteristics. The results that were obtained have the potential to play a significant role in pushing forward the design and development of tools, materials, and nanostructures that have viscoelastic mechanical characteristics and graded functions.

2.
Pattern Recognit ; 135: 109186, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36405882

RESUMEN

Unfortunately, the COVID-19 outbreak has been accompanied by the spread of rumors and depressing news. Herein, we develop a dynamic nested optimal control model of COVID-19 and its rumor outbreaks. The model aims to curb the epidemics by reducing the number of individuals infected with COVID-19 and reducing the number of rumor-spreaders while minimizing the cost associated with the control interventions. We use the modified approximation Karush-Kuhn-Tucker conditions with the Hamiltonian function to simplify the model before solving it using a genetic algorithm. The present model highlights three prevention measures that affect COVID-19 and its rumor outbreaks. One represents the interventions to curb the COVID-19 pandemic. The other two represent interventions to increase awareness, disseminate the correct information, and impose penalties on the spreaders of false rumors. The results emphasize the importance of interventions in curbing the spread of the COVID-19 pandemic and its associated rumor problems alike.

3.
J Healthc Eng ; 2022: 3602792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35035825

RESUMEN

We develop neutrosophic goal programming models for sustainable resource planning in a healthcare organization. The neutrosophic approach can help examine the imprecise aspiration levels of resources. For deneutrosophication, the neutrosophic value is transformed into three intervals based on the truth, falsity, and indeterminacy-membership functions. Then, a crisp value is derived. Moreover, multi-choice goal programming is also used to get a crisp value. The proposed models seek to draw a strategic plan and long-term vision for a healthcare organization. Accordingly, the specific aims of the proposed flexible models are meant to evaluate hospital service performance and to establish an optimal plan to meet the growing patient needs. As a result, sustainability's economic and social goals will be achieved so that the total cost would be optimized, patients' waiting time would be reduced, high-quality services would be offered, and appropriate medical drugs would be provided. The simplicity and feasibility of the proposed models are validated using real data collected from the Al-Amal Center for Oncology, Aden, Yemen. The results obtained indicate the robustness of the proposed models, which would be valuable for planners who could guide healthcare staff in providing the necessary resources for optimal annual planning.


Asunto(s)
Atención a la Salud , Objetivos , Humanos
4.
Adv Differ Equ ; 2021(1): 108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613669

RESUMEN

In this work, we propose a new dynamic mathematical model framework governed by a system of differential equations that integrates both COVID-19 and cholera outbreaks. The estimations of the model parameters are based on the outbreaks of COVID-19 and cholera in Yemen from January 1, 2020 to May 30, 2020. Moreover, we present an optimal control model for minimizing both the number of infected people and the cost associated with each control. Four preventive measures are to be taken to control the outbreaks: social distancing, lockdown, the number of tests, and the number of chlorine water tablets (CWTs). Under the current conditions and resources available in Yemen, various policies are simulated to evaluate the optimal policy. The results obtained confirm that the policy of providing resources for the distribution of CWTs, providing sufficient resources for testing with an average social distancing, and quarantining of infected individuals has significant effects on flattening the epidemic curves.

5.
Results Phys ; 20: 103654, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33520620

RESUMEN

Since the outbreak of COVID-19, most of the countries around the world have been confronting the loss of lives, struggling with several economical parameters, i.e. low GDP growth, increasing unemployment rate, and others. It's been 11 months since we are struggling with COVID-19 and some of the countries already facing the second wave of COVID-19. To get rid of these problems, inventions of a vaccine and its optimum distribution is a key factor. Many companies are trying to find a vaccine, but for nearly 8 billion people it would be impossible to find a vaccine. Thus, the competition arises, and this competition would be too intense to satisfy all the people of a country with the vaccine. Therefore, at first, governments must identify priority groups for allocating COVID-19 vaccine doses. In this work, we identify four main criteria and fifteen sub-criteria based on age, health status, a woman's status, and the kind of job. The main and sub-criteria will be evaluated using a neutrosophic Analytic Hierarchy Process (AHP). Then, the COVID-19 vaccine alternatives will be ranked using a neutrosophic TOPSIS method. All the results obtained indicate that the healthcare personnel, people with high-risk health, elderly people, essential workers, pregnant and lactating mothers are the most prioritized people to take the vaccine dose first. Also, the results indicate that the most appropriate vaccine for patients and health workers have priority over other alternative vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...