Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4866, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964177

RESUMEN

Progress in sample preparation for scRNA-seq is reported based on RevGel-seq, a reversible-hydrogel technology optimized for samples of fresh cells. Complexes of one cell paired with one barcoded bead are stabilized by a chemical linker and dispersed in a hydrogel in the liquid state. Upon gelation on ice the complexes are immobilized and physically separated without requiring nanowells or droplets. Cell lysis is triggered by detergent diffusion, and RNA molecules are captured on the adjacent barcoded beads for further processing with reverse transcription and preparation for cDNA sequencing. As a proof of concept, analysis of PBMC using RevGel-seq achieves results similar to microfluidic-based technologies when using the same original sample and the same data analysis software. In addition, a clinically relevant application of RevGel-seq is presented for pancreatic islet cells. Furthermore, characterizations carried out on cardiomyocytes demonstrate that the hydrogel technology readily accommodates very large cells. Standard analyses are in the 10,000-input cell range with the current gelation device, in order to satisfy common requirements for single-cell research. A convenient stopping point after two hours has been established by freezing at the cell lysis step, with full preservation of gene expression profiles. Overall, our results show that RevGel-seq represents an accessible and efficient instrument-free alternative, enabling flexibility in terms of experimental design and timing of sample processing, while providing broad coverage of cell types.


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Análisis de Secuencia de ARN/métodos , Hidrogeles/química , Análisis de la Célula Individual/métodos , Humanos , Animales , Ratones , Perfilación de la Expresión Génica
2.
Cell Stem Cell ; 28(10): 1805-1821.e8, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34033742

RESUMEN

Neural stem cells residing in the hippocampal neurogenic niche sustain lifelong neurogenesis in the adult brain. Adult hippocampal neurogenesis (AHN) is functionally linked to mnemonic and cognitive plasticity in humans and rodents. In Alzheimer's disease (AD), the process of generating new neurons at the hippocampal neurogenic niche is impeded, yet the mechanisms involved are unknown. Here we identify miR-132, one of the most consistently downregulated microRNAs in AD, as a potent regulator of AHN, exerting cell-autonomous proneurogenic effects in adult neural stem cells and their progeny. Using distinct AD mouse models, cultured human primary and established neural stem cells, and human patient material, we demonstrate that AHN is directly affected by AD pathology. miR-132 replacement in adult mouse AD hippocampus restores AHN and relevant memory deficits. Our findings corroborate the significance of AHN in mouse models of AD and reveal the possible therapeutic potential of targeting miR-132 in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Animales , Modelos Animales de Enfermedad , Hipocampo , Humanos , Trastornos de la Memoria/genética , Trastornos de la Memoria/terapia , Ratones , MicroARNs/genética , Neurogénesis
3.
Cell Rep ; 32(13): 108189, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32997994

RESUMEN

Single-nucleus RNA sequencing (snRNA-seq) is used as an alternative to single-cell RNA-seq, as it allows transcriptomic profiling of frozen tissue. However, it is unclear whether snRNA-seq is able to detect cellular state in human tissue. Indeed, snRNA-seq analyses of human brain samples have failed to detect a consistent microglial activation signature in Alzheimer's disease. Our comparison of microglia from single cells and single nuclei of four human subjects reveals that, although most genes show similar relative abundances in cells and nuclei, a small population of genes (∼1%) is depleted in nuclei compared to whole cells. This population is enriched for genes previously implicated in microglial activation, including APOE, CST3, SPP1, and CD74, comprising 18% of previously identified microglial-disease-associated genes. Given the low sensitivity of snRNA-seq to detect many activation genes, we conclude that snRNA-seq is not suited for detecting cellular activation in microglia in human disease.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Microglía/fisiología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Humanos
4.
Nat Neurosci ; 22(12): 2111-2116, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659342

RESUMEN

Although genetics highlights the role of microglia in Alzheimer's disease, one-third of putative Alzheimer's disease risk genes lack adequate mouse orthologs. Here we successfully engraft human microglia derived from embryonic stem cells in the mouse brain. The cells recapitulate transcriptionally human primary microglia ex vivo and show expression of human-specific Alzheimer's disease risk genes. Oligomeric amyloid-ß induces a divergent response in human versus mouse microglia. This model can be used to study the role of microglia in neurological diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Células Madre Embrionarias/citología , Microglía/metabolismo , Microglía/trasplante , Transcriptoma , Péptidos beta-Amiloides/farmacología , Animales , Diferenciación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos
5.
Sci Rep ; 8(1): 12106, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108239

RESUMEN

Phosphorylation of proteins on serine, threonine, and tyrosine residues is a ubiquitous post-translational modification that plays a key part of essentially every cell signaling process. It is reasonable to assume that inter-individual variation in protein phosphorylation may underlie phenotypic differences, as has been observed for practically any other molecular regulatory phenotype. However, we do not know much about the extent of inter-individual variation in phosphorylation because it is quite challenging to perform a quantitative high throughput study to assess inter-individual variation in any post-translational modification. To test our ability to address this challenge with SILAC-based mass spectrometry, we quantified phosphorylation levels for three genotyped human cell lines within a nested experimental framework, and found that genetic background is the primary determinant of phosphoproteome variation. We uncovered multiple functional, biophysical, and genetic associations with germline driven phosphopeptide variation. Variants affecting protein levels or structure were among these associations, with the latter presenting, on average, a stronger effect. Interestingly, we found evidence that is consistent with a phosphopeptide variability buffering effect endowed from properties enriched within longer proteins. Because the small sample size in this 'pilot' study may limit the applicability of our genetic observations, we also undertook a thorough technical assessment of our experimental workflow to aid further efforts. Taken together, these results provide the foundation for future work to characterize inter-individual variation in post-translational modification levels and reveal novel insights into the nature of inter-individual variation in phosphorylation.


Asunto(s)
Variación Biológica Poblacional/genética , Fosfopéptidos/metabolismo , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteoma/metabolismo , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Conjuntos de Datos como Asunto , Genotipo , Humanos , Fosforilación/genética , Polimorfismo de Nucleótido Simple , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...