RESUMEN
Blast disease caused by the fungus Magnaporthe oryzae is one of the most devastating rice diseases. Disease resistance genes such as Pi-ta or Pi-ta2 are critical in protecting rice production from blast. Published work reports that Pi-ta codes for a nucleotide-binding and leucine-rich repeat domain protein (NLR) that recognizes the fungal protease-like effector AVR-Pita by direct binding. However, this model was challenged by the recent discovery that Pi-ta2 resistance, which also relies on AVR-Pita detection, is conferred by the unconventional resistance gene Ptr, which codes for a membrane protein with a cytoplasmic armadillo repeat domain. Here, using NLR Pi-ta and Ptr RNAi knockdown and CRISPR/Cas9 knockout mutant rice lines, we found that AVR-Pita recognition relies solely on Ptr and that the NLR Pi-ta has no role in it, indicating that it is not the Pi-ta resistance gene. Different alleles of Ptr confer different recognition specificities. The A allele of Ptr (PtrA) detects all natural sequence variants of the effector and confers Pi-ta2 resistance, while the B allele of Ptr (PtrB) recognizes a restricted set of AVR-Pita alleles and, thereby, confers Pi-ta resistance. Analysis of the natural diversity in AVR-Pita and of mutant and transgenic strains identified one specific polymorphism in the effector sequence that controls escape from PtrB-mediated resistance. Taken together, our work establishes that the M. oryzae effector AVR-Pita is detected in an allele-specific manner by the unconventional rice resistance protein Ptr and that the NLR Pi-ta has no function in Pi-ta resistance and the recognition of AVR-Pita.
Asunto(s)
Alelos , Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos , MagnaportheRESUMEN
Invasive fungal pathogens pose a substantial threat to widely cultivated crop species, owing to their capacity to adapt to new hosts and new environmental conditions. Gaining insights into the demographic history of these pathogens and unravelling the mechanisms driving coevolutionary processes are crucial for developing durably effective disease management programmes. Pyrenophora teres is a significant fungal pathogen of barley, consisting of two lineages, Ptt and Ptm, with global distributions and demographic histories reflecting barley domestication and spread. However, the factors influencing the population structure of P. teres remain poorly understood, despite the varietal and environmental heterogeneity of barley agrosystems. Here, we report on the population genomic structure of P. teres in France and globally. We used genotyping-by-sequencing to show that Ptt and Ptm can coexist in the same area in France, with Ptt predominating. Furthermore, we showed that differences in the vernalization requirement of barley varieties were associated with population differentiation within Ptt in France and at a global scale, with one population cluster found on spring barley and another population cluster found on winter barley. Our results demonstrate how cultivation conditions, possibly associated with genetic differences between host populations, can be associated with the maintenance of divergent invasive pathogen populations coexisting over large geographic areas. This study not only advances our understanding of the coevolutionary dynamics of the Pt-barley pathosystem but also prompts further research on the relative contributions of adaptation to the host versus adaptation to abiotic conditions in shaping Ptt populations.
Asunto(s)
Ascomicetos , Hordeum , Enfermedades de las Plantas , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Francia , Ascomicetos/genética , Interacciones Huésped-Patógeno/genética , Filogenia , VernalizaciónRESUMEN
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY: Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE: P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS: P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Asunto(s)
Ascomicetos , Hordeum , Ascomicetos/genética , Productos Agrícolas , TriticumRESUMEN
We characterized the genetic structure of 609 strains of Pyricularia oryzae, the fungal pathogen causing rice blast disease, in three main regions in Vietnam using microsatellites (SSR) markers. From the 447 distinct multilocus genotypes identified, six genetic clusters were defined, all of them showing elevated genetic and genotypic diversities. Four of these clusters were related to rice-attacking lineages already described at the worldwide scale, whereas the two remaining clusters were endemic to Vietnam. Strains were unevenly distributed into the six clusters depending on their groups of rice variety (indica / japonica) or type of varieties (traditional / modern) of origin, but none of the clusters was specifically related to these two factors. The highest diversity of blast population was found in Northern mountainous area, and the lowest in Red River Delta in both terms of genetic diversity and gene diversity. Hierarchical AMOVAs confirmed that all three factors considered (rice variety group, type of variety origin and geography) significantly contributed to the population structure of P. oryzae in Vietnam, with highest contribution from rice variety group. Mating types were unevenly distributed among clusters. Combined with results of female fertility and linkage disequilibirum, we hypothesized that clonal reproduction probably occurred in all clusters, but that sexual reproduction likely took place at least in some restricted areas in the Northern mountainous area for strains belonging to the cluster related to the previously described recombinant lineage (worldwide lineage 1). Our study pictures the genetic diversity, population structure and reproductive mode of the blast fungus in central and north Vietnam, and shows that the observed population structure is explained by several factors, the most important one being the variability of rice variety. All these new information might help for elaborating appropriate strategies to controlling the blast disease.
Asunto(s)
Magnaporthe , Oryza , Vietnam/epidemiología , Magnaporthe/genética , Variación Genética/genética , Pandemias , Oryza/microbiologíaRESUMEN
Traditional agrosystems, where humans, crops and microbes have coevolved over long periods, can serve as models to understand the ecoevolutionary determinants of disease dynamics and help the engineering of durably resistant agrosystems. Here, we investigated the genetic and phenotypic relationship between rice (Oryza sativa) landraces and their rice blast pathogen (Pyricularia oryzae) in the traditional Yuanyang terraces of flooded rice paddies in China, where rice landraces have been grown and bred over centuries without significant disease outbreaks. Analyses of genetic subdivision revealed that indica rice plants clustered according to landrace names. Three new diverse lineages of rice blast specific to the Yuanyang terraces coexisted with lineages previously detected at the worldwide scale. Population subdivision in the pathogen population did not mirror pattern of population subdivision in the host. Measuring the pathogenicity of rice blast isolates on landraces revealed generalist life history traits. Our results suggest that the implementation of disease control strategies based on the emergence or maintenance of a generalist lifestyle in pathogens may sustainably reduce the burden of disease in crops.
Asunto(s)
Variación Genética , Oryza , Humanos , Oryza/genética , Fitomejoramiento , Productos Agrícolas , China , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiologíaRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1010687.].
RESUMEN
Sexual reproduction in Ascomycetes is well described in several model organisms such as Neurospora crassa or Podospora anserina. Deciphering the biological process of sexual reproduction (from the recognition between compatible partners to the formation of zygote) can be a major advantage to better control sexually reproducing pathogenic fungi. In Pyricularia oryzae, the fungal pathogen causing blast diseases on several Poaceae species, the biology of sexual reproduction remains poorly documented. Besides the well-documented production of asexual macroconidia, the production of microconidia was seldom reported in P. oryzae, and their role as male gamete (i.e., spermatia) and in male fertility has never been explored. Here, we characterised the morphological features of microconidia and demonstrated that they are bona fide spermatia. Contrary to macroconidia, microconidia are not able to germinate and seem to be the only male gametes in P. oryzae. We show that fruiting body (perithecium) formation requires microconidia to get in contact with mycelium of strains of opposite mating type, to presumably fertilise the female gametes.
Asunto(s)
Neurospora crassa , Podospora , Esporas Fúngicas , FertilidadRESUMEN
Many species of fungal plant pathogens coexist as multiple lineages on the same host, but the factors underlying the origin and maintenance of population structure remain largely unknown. The rice blast fungus Pyricularia oryzae is a widespread model plant pathogen displaying population subdivision. However, most studies of natural variation in P. oryzae have been limited in genomic or geographic resolution, and host adaptation is the only factor that has been investigated extensively as a contributor to population subdivision. In an effort to complement previous studies, we analyzed genetic and phenotypic diversity in isolates of the rice blast fungus covering a broad geographical range. Using single-nucleotide polymorphism genotyping data for 886 isolates sampled from 152 sites in 51 countries, we showed that population subdivision of P. oryzae in one recombining and three clonal lineages with broad distributions persisted with deeper sampling. We also extended previous findings by showing further population subdivision of the recombining lineage into one international and three Asian clusters, and by providing evidence that the three clonal lineages of P. oryzae were found in areas with different prevailing environmental conditions, indicating niche separation. Pathogenicity tests and bioinformatic analyses using an extended set of isolates and rice varieties indicated that partial specialization to rice subgroups contributed to niche separation between lineages, and differences in repertoires of putative virulence effectors were consistent with differences in host range. Experimental crosses revealed that female sterility and early post-mating genetic incompatibilities acted as strong additional barriers to gene flow between clonal lineages. Our results demonstrate that the spread of a fungal pathogen across heterogeneous habitats and divergent populations of a crop species can lead to niche separation and reproductive isolation between distinct, widely distributed, lineages.
Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Variación Genética , Magnaporthe/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiologíaRESUMEN
Wheat blast is a devastating disease caused by the pathogenic fungus Pyricularia oryzae. Wheat blast first emerged in South America before more recently reaching Bangladesh. Even though the pathogen can spread locally by air-dispersed spores, long-distance spread is likely to occur via infected wheat seed or grain. Wheat blast epidemics are caused by a genetic lineage of the fungus, called the Triticum lineage, only differing from the other P. oryzae lineages by less than 1% genetic divergence. In order to prevent further spread of this pathogen to other wheat-growing areas in the world, sensitive and specific detection tools are needed to test for contamination of traded seed lots by the P. oryzae Triticum lineage. In this study, we adopted a comparative genomics approach to identify new loci specific to the P. oryzae Triticum lineage and used them to design a set of new markers that can be used in conventional polymerase chain reaction (PCR), real-time PCR, or loop-mediated isothermal amplification (LAMP) for the detection of the pathogen, with improved inclusivity and specificity compared to currently available tests. A preliminary biological enrichment step of the seeds was shown to improve the sensitivity of the tests, which enabled the detection of the target at an infection rate as low as 0.25%. Combined with others, this new toolkit may be particularly beneficial in preventing the trade of contaminated seeds and in limiting the spread of the disease.
RESUMEN
Study of the congruence of population genetic structure between hosts and pathogens gives important insights into their shared phylogeographical and coevolutionary histories. We studied the population genetic structure of castrating anther-smut fungi (genus Microbotryum) and of their host plants, the Silene nutans species complex, and the morphologically and genetically closely related Silene italica, which can be found in sympatry. Phylogeographical population genetic structure related to persistence in separate glacial refugia has been recently revealed in the S. nutans plant species complex across Western Europe, identifying several distinct lineages. We genotyped 171 associated plant-pathogen pairs of anther-smut fungi and their host plant individuals using microsatellite markers and plant chloroplastic single nucleotide polymorphisms. We found clear differentiation between fungal populations parasitizing S. nutans and S. italica plants. The population genetic structure of fungal strains parasitizing the S. nutans plant species complex mirrored the host plant genetic structure, suggesting that the pathogen was isolated in glacial refugia together with its host and/or that it has specialized on the plant genetic lineages. Using random forest approximate Bayesian computation (ABC-RF), we found that the divergence history of the fungal lineages on S. nutans was congruent with that previously inferred for the host plant and probably occurred with ancient but no recent gene flow. Genome sequences confirmed the genetic structure and the absence of recent gene flow between fungal genetic lineages. Our analyses of individual host-pathogen pairs contribute to a better understanding of co-evolutionary histories between hosts and pathogens in natural ecosystems, in which such studies remain scarce.
Asunto(s)
Basidiomycota/genética , Coevolución Biológica , Genética de Población , Silene/genética , Silene/microbiología , Núcleo Celular/genética , ADN de Cloroplastos/genética , Europa (Continente) , Flores/microbiología , Flujo Génico , Marcadores Genéticos , Genoma Fúngico , Genoma de Planta , Genotipo , Repeticiones de Microsatélite , Filogeografía , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Silene/clasificaciónRESUMEN
Rapid detection is key to managing emerging diseases because it allows their spread around the world to be monitored and limited. The first major wheat blast epidemics were reported in 1985 in the Brazilian state of Paraná. Following this outbreak, the disease quickly spread to neighboring regions and countries and, in 2016, the first report of wheat blast disease outside South America was released. This Asian outbreak was due to the trade of infected South American seed, demonstrating the importance of detection tests in order to avoid importing contaminated biological material into regions free from the pathogen. Genomic analysis has revealed that one particular lineage within the fungal species Pyricularia oryzae is associated with this disease: the Triticum lineage. A comparison of 81 Pyricularia genomes highlighted polymorphisms specific to the Triticum lineage, and this study developed a real-time PCR test targeting one of these polymorphisms. The test's performance was then evaluated in order to measure its analytical specificity, analytical sensitivity, and robustness. The C17 quantitative PCR test detected isolates belonging to the Triticum lineage with high sensitivity, down to 13 plasmid copies or 1 pg of genomic DNA per reaction tube. The blast-based approach developed here to study P. oryzae can be transposed to other emerging diseases.
Asunto(s)
Agricultura , Genoma Fúngico , Magnaporthe , Reacción en Cadena en Tiempo Real de la Polimerasa , Triticum , Agricultura/métodos , Genes Fúngicos/genética , Genómica , Magnaporthe/genética , Enfermedades de las Plantas/microbiología , América del Sur , Triticum/microbiologíaRESUMEN
Southern rice black-streaked dwarf virus (SRBSDV), which causes severe disease symptoms in rice (Oriza sativa L.) has been emerging in the last decade throughout northern Vietnam, southern Japan and southern, central and eastern China. Here we attempt to quantify the prevalence of SRBSDV in the Honghe Hani rice terraces system (HHRTS)-a Chinese 1300-year-old traditional rice production system. We first confirm that genetically diverse rice varieties are still being cultivated in the HHRTS and categorize these varieties into three main genetic clusters, including the modern hybrid varieties group (MH), the Hongyang improved modern variety group (HY) and the traditional indica landraces group (TIL). We also show over a 2-year period that SRBSDV remains prevalent in the HHRTS (20.1% prevalence) and that both the TIL (17.9% prevalence) and the MH varieties (5.1% prevalence) were less affected by SRBSDV than were the HY varieties (30.2% prevalence). Collectively we suggest that SRBSDV isolates are freely moving within the HHRTS and that TIL, HY and MH rice genetic clusters are not being preferentially infected by particular SRBSDV lineages. Given that SRBSDV can cause 30-50% rice yield losses, our study emphasizes both the need to better monitor the disease in the HHRTS, and the need to start considering ways to reduce its burden on rice production.
Asunto(s)
Oryza/virología , Enfermedades de las Plantas/virología , Reoviridae/aislamiento & purificación , China , Enfermedades Transmisibles Emergentes/virología , Japón , Filogenia , Reoviridae/clasificación , Reoviridae/genética , VietnamRESUMEN
The rice blast fungus Magnaporthe oryzae (syn., Pyricularia oryzae) is both a threat to global food security and a model for plant pathology. Molecular pathologists need an accurate understanding of the origins and line of descent of M. oryzae populations in order to identify the genetic and functional bases of pathogen adaptation and to guide the development of more effective control strategies. We used a whole-genome sequence analysis of samples from different times and places to infer details about the genetic makeup of M. oryzae from a global collection of isolates. Analyses of population structure identified six lineages within M. oryzae, including two pandemic on japonica and indica rice, respectively, and four lineages with more restricted distributions. Tip-dating calibration indicated that M. oryzae lineages separated about a millennium ago, long after the initial domestication of rice. The major lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and evidence of DNA acquisition from multiple lineages. Tests for weak natural selection revealed that the pandemic spread of clonal lineages entailed an evolutionary "cost," in terms of the accumulation of deleterious mutations. Our findings reveal the coexistence of multiple endemic and pandemic lineages with contrasting population and genetic characteristics within a widely distributed pathogen.IMPORTANCE The rice blast fungus Magnaporthe oryzae (syn., Pyricularia oryzae) is a textbook example of a rapidly adapting pathogen, and it is responsible for one of the most damaging diseases of rice. Improvements in our understanding of Magnaporthe oryzae's diversity and evolution are required to guide the development of more effective control strategies. We used genome sequencing data for samples from around the world to infer the evolutionary history of M. oryzae We found that M. oryzae diversified about 1,000 years ago, separating into six main lineages: two pandemic on japonica and indica rice, respectively, and four with more restricted distributions. We also found that a lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and the acquisition of genetic material from multiple lineages. This work provides a population-level genomic framework for defining molecular markers for the control of rice blast and investigations of the molecular basis of differences in pathogenicity between M. oryzae lineages.
Asunto(s)
Variación Genética , Magnaporthe/clasificación , Magnaporthe/aislamiento & purificación , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Genotipo , Magnaporthe/genética , Filogeografía , Secuenciación Completa del GenomaRESUMEN
Delineating species and epidemic lineages in fungal plant pathogens is critical to our understanding of disease emergence and the structure of fungal biodiversity and also informs international regulatory decisions. Pyricularia oryzae (syn. Magnaporthe oryzae) is a multihost pathogen that infects multiple grasses and cereals, is responsible for the most damaging rice disease (rice blast), and is of growing concern due to the recent introduction of wheat blast to Bangladesh from South America. However, the genetic structure and evolutionary history of M. oryzae, including the possible existence of cryptic phylogenetic species, remain poorly defined. Here, we use whole-genome sequence information for 76 M. oryzae isolates sampled from 12 grass and cereal genera to infer the population structure of M. oryzae and to reassess the species status of wheat-infecting populations of the fungus. Species recognition based on genealogical concordance, using published data or extracting previously used loci from genome assemblies, failed to confirm a prior assignment of wheat blast isolates to a new species (Pyricularia graminis-tritici). Inference of population subdivisions revealed multiple divergent lineages within M. oryzae, each preferentially associated with one host genus, suggesting incipient speciation following host shift or host range expansion. Analyses of gene flow, taking into account the possibility of incomplete lineage sorting, revealed that genetic exchanges have contributed to the makeup of multiple lineages within M. oryzae These findings provide greater understanding of the ecoevolutionary factors that underlie the diversification of M. oryzae and highlight the practicality of genomic data for epidemiological surveillance in this important multihost pathogen.IMPORTANCE Infection of novel hosts is a major route for disease emergence by pathogenic microorganisms. Understanding the evolutionary history of multihost pathogens is therefore important to better predict the likely spread and emergence of new diseases. Magnaporthe oryzae is a multihost fungus that causes serious cereal diseases, including the devastating rice blast disease and wheat blast, a cause of growing concern due to its recent spread from South America to Asia. Using whole-genome analysis of 76 fungal strains from different hosts, we have documented the divergence of M. oryzae into numerous lineages, each infecting a limited number of host species. Our analyses provide evidence that interlineage gene flow has contributed to the genetic makeup of multiple M. oryzae lineages within the same species. Plant health surveillance is therefore warranted to safeguard against disease emergence in regions where multiple lineages of the fungus are in contact with one another.
Asunto(s)
Flujo Génico , Magnaporthe/genética , Bangladesh , Biota , Grano Comestible/microbiología , Transferencia de Gen Horizontal , Variación Genética , Magnaporthe/clasificación , Magnaporthe/aislamiento & purificación , Poaceae/microbiología , Análisis de Secuencia de ADN , América del Sur , Secuenciación Completa del GenomaRESUMEN
The structure of pathogen populations is an important driver of epidemics affecting crops and natural plant communities. Comparing the composition of two pathogen populations consisting of assemblages of genotypes or phenotypes is a crucial, recurrent question encountered in many studies in plant disease epidemiology. Determining whether there is a significant difference between two sets of proportions is also a generic question for numerous biological fields. When samples are small and data are sparse, it is not straightforward to provide an accurate answer to this simple question because routine statistical tests may not be exactly calibrated. To tackle this issue, we built a computationally intensive testing procedure, the generalized Monte Carlo plug-in test with calibration test, which is implemented in an R package available at https://doi.org/10.5281/zenodo.635791 . A simulation study was carried out to assess the performance of the proposed methodology and to make a comparison with standard statistical tests. This study allows us to give advice on how to apply the proposed method, depending on the sample sizes. The proposed methodology was then applied to real datasets and the results of the analyses were discussed from an epidemiological perspective. The applications to real data sets deal with three topics in plant pathology: the reproduction of Magnaporthe oryzae, the spatial structure of Pseudomonas syringae, and the temporal recurrence of Puccinia triticina.
Asunto(s)
Basidiomycota/fisiología , Magnaporthe/fisiología , Modelos Estadísticos , Enfermedades de las Plantas/estadística & datos numéricos , Plantas/microbiología , Pseudomonas syringae/fisiología , Calibración , Conjuntos de Datos como Asunto , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiologíaRESUMEN
Understanding how fungi specialize on their plant host is crucial for developing sustainable disease control. A traditional, centuries-old rice agro-system of the Yuanyang terraces was used as a model to show that virulence effectors of the rice blast fungus Magnaporthe oryzaeh play a key role in its specialization on locally grown indica or japonica local rice subspecies. Our results have indicated that major differences in several components of basal immunity and effector-triggered immunity of the japonica and indica rice varieties are associated with specialization of M. oryzae. These differences thus play a key role in determining M. oryzae host specificity and may limit the spread of the pathogen within the Yuanyang agro-system. Specifically, the AVR-Pia effector has been identified as a possible determinant of the specialization of M. oryzae to local japonica rice.
Asunto(s)
Especificidad del Huésped , Magnaporthe/patogenicidad , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Factores de Virulencia/metabolismo , Interacciones Huésped-Patógeno , Magnaporthe/fisiologíaRESUMEN
BACKGROUND: In February 2016, a new fungal disease was spotted in wheat fields across eight districts in Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields. RESULTS: Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae. CONCLUSION: Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease outbreaks and provide valuable information regarding the identity and origin of the infectious agent.
Asunto(s)
Magnaporthe/patogenicidad , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Bangladesh , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Triticum/genéticaRESUMEN
Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.
Asunto(s)
Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Magnaporthe/fisiología , Oryza/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Evolución Biológica , Genotipo , Oryza/microbiología , Enfermedades de las Plantas/inmunologíaRESUMEN
Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 ß-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.