Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biophys J ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148292

RESUMEN

The activation of heterotrimeric G proteins through G-protein-coupled receptors (GPCRs) is a ubiquitous signaling mechanism in eukaryotic biology. The three principal molecular components of this cascade are the GPCR, Gα subunit, and Gßγ subunit. Measurement of interactions between these components and their downstream effectors in live cells is paramount to understanding how cells fine-tune their physiology in response to many external stimuli. Multicolor fluorescence fluctuation spectroscopy (FFS) approaches allow the sensitive detection of heteromeric interactions by using spectrally distinct fluorophores to label biomolecules of interest. We considered three imaging FFS approaches to measuring molecular interactions from the signals produced by a spectrally resolved confocal microscopy: raster spectral image correlation spectroscopy (RSICS), spectral spatial cumulant analysis, and native resolution spatial cumulant analysis. We characterized these approaches using simulation and experiments on heteromers with known stoichiometries. We found that RSICS had the best sensitivity for measuring heteromeric interactions and employed it to measure G protein complexes. As measured by RSICS, interactions between the G protein subunits Gαi1 and Gß1γ2 were sensitive to the stimulation of two GPCRs, the D2 dopamine receptor and the α-2A adrenergic receptor. Interactions between GPCRs and G proteins were not detectable above background, supporting a collisional model of GPCR/G protein interactions in contrast to a preassembly model where strong interactions would be present. These data are uniquely available by this FFS framework, which is appropriate for not only multiplexed measurements of G protein biology but any dynamic protein complexes in the cell.

2.
bioRxiv ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39211283

RESUMEN

Flagella are complex, trans-envelope nanomachines that localize to species- specific cellular addresses. Here we study the localization dynamics of the earliest stage of basal body formation in Bacillus subtilis using a fluorescent fusion to the C-ring protein FliM. We find that B. subtilis basal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan. Rare basal bodies were observed to be mobile however, and the frequency of basal body mobility is elevated both early in basal body assembly and when the rod is mutated. Thus, basal body mobility is a precursor to patterning and we propose that rod polymerization probes the peptidoglycan superstructure for pores of sufficient diameter that permit rod completion. Furthermore, mutation of the rod also disrupts basal body patterning in a way that phenocopies mutation of the cytoplasmic flagellar patterning protein FlhF. We infer that conformational changes in the basal body exchange information between rod synthesis and the cytoplasmic patterning proteins to restrict assembly at certain pores established by a grid-like pattern pre-existent in the peptidoglycan itself. IMPORTANCE: Bacteria insert flagella in a species-specific pattern on the cell body, but how patterns are achieved is poorly understood. In bacteria with a single polar flagellum, a marker protein localizes to the cell pole and nucleates the assembly of the flagellum at that site. Bacillus subtilis assembles ∼15 flagella over the length of the cell body in a grid-like pattern and lacks all proteins associated with targeted assembly in polarly flagellated bacteria. Here we show that B. subtilis basal bodies are mobile soon after assembly and become immobilized when the flagellar rod transits the peptidoglycan wall. Moreover, defects in the flagellar rod lead to an asymmetric distribution of flagella with respect to the midcell. We conclude that the patterning of flagella is different in B. subtilis , and we infer that the B. subtilis rod probes the peptidoglycan for holes that can accommodate the machine.

3.
Nat Commun ; 15(1): 4609, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816425

RESUMEN

The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca2+ release from the ER, which is triggered after the generation of cytosolic DNA and the activation of cGAS/STING. This results in CaMKK2/AMPK activation and subsequent Exo1 phosphorylation, which prevent aberrant fork processing, thereby ensuring genome stability. However, it remains poorly understood how the TRPV2 channel is activated by the presence of cytosolic DNA. Here, through a genome-wide CRISPR-based screen, we identify TRPM8 channel-associated factor 1 (TCAF1) as a key factor promoting TRPV2-mediated Ca2+ release under replication stress or other conditions that activate cGAS/STING. Mechanistically, TCAF1 assists Ca2+ release by facilitating the dissociation of STING from TRPV2, thereby relieving TRPV2 repression. Consistent with this function, TCAF1 is required for fork protection, chromosomal stability, and cell survival after replication stress.


Asunto(s)
Calcio , Citosol , Replicación del ADN , Proteínas de la Membrana , Canales Catiónicos TRPV , Humanos , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Citosol/metabolismo , ADN/metabolismo , Daño del ADN , Inestabilidad Genómica , Células HEK293 , Células HeLa , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Fosforilación , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética
4.
Biophys J ; 117(9): 1764-1777, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31606123

RESUMEN

Fluorescence fluctuation spectroscopy can be used to measure the aggregation of fluorescently labeled molecules and is typically performed using time series data. Spatial intensity distribution analysis and fluorescence moment image analysis are established tools for measuring molecular brightnesses from single-color images collected with laser scanning microscopes. We have extended these tools for analysis of two-color images to resolve heteromeric interactions between molecules labeled with spectrally distinct chromophores. We call these new methods two-color spatial intensity distribution analysis and two-color spatial cumulant analysis (2c-SpCA). To implement these techniques on a hyperspectral imaging system, we developed a spectral shift filtering technique to remove artifacts due to intrinsic cross talk between detector bins. We determined that 2c-SpCA provides better resolution from samples containing multiple fluorescent species; hence, this technique was carried forward to study images of living cells. We used fluorescent heterodimers labeled with enhanced green fluorescent protein and mApple to quantify the effects of resonance energy transfer and incomplete maturation of mApple on brightness measurements. We show that 2c-SpCA can detect the interaction between two components of trimeric G-protein complexes. Thus, 2c-SpCA presents a robust and computationally expedient means of measuring heteromeric interactions in cellular environments.


Asunto(s)
Algoritmos , Proteínas de la Membrana/química , Multimerización de Proteína , Membrana Celular/metabolismo , Color , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos
5.
J Transplant ; 2014: 169546, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24800056

RESUMEN

Objective. To describe the role of imaging in vascular composite allotransplantation based on one institution's experience with upper extremity allotransplant patients. Methods. The institutional review board approved this review of HIPAA-compliant patient data without the need for individual consent. A retrospective review was performed of imaging from 2008 to 2011 on individuals undergoing upper extremity transplantation. This demonstrated that, of the 19 patients initially considered, 5 patients with a mean age of 37 underwent transplantation. Reports were correlated clinically to delineate which preoperative factors lead to patient selection versus disqualification and what concerns dictated postoperative imaging. Findings were subdivided into musculoskeletal and vascular imaging criterion. Results. Within the screening phase, musculoskeletal exclusion criterion included severe shoulder arthropathy, poor native bone integrity, and marked muscular atrophy. Vascular exclusion criterion included loss of sufficient arterial or venous supply and significant distortion of the native vascular architecture. Postoperative imaging was used to document healing and hardware integrity. Postsurgical angiography and ultrasound were used to monitor for endothelial proliferation or thrombosis as signs of rejection and vascular complication. Conclusion. Multimodality imaging is an integral component of vascular composite allotransplantation surgical planning and surveillance to maximize returning form and functionality while minimizing possible complications.

6.
Crit Care Nurs Clin North Am ; 23(3): 505-17, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22054824

RESUMEN

Caring for upper extremity transplant recipients can offer challenges and opportunities to nursing staff in combining new patient procedures, new technologies, and complex patient care needs including unique physical care, monitoring and observation, rehabilitation expectations, and psychiatric/psychosocial support. Medical professionals continue to be apprehensive about the risks of immunosuppressive therapy and the possibility of acute and chronic rejection. The sustained development and research into reliable, reduced-dose immunosuppression or immunomodulatory strategies could expand the life-enhancing benefits of reconstructive transplantation.


Asunto(s)
Trasplante de Mano , Cuidados Posoperatorios/enfermería , Extremidad Superior/cirugía , Rechazo de Injerto/tratamiento farmacológico , Humanos , Inmunosupresores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...