Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cogn Affect Behav Neurosci ; 24(2): 228-245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38356013

RESUMEN

Anxiety disorders affect millions of people worldwide and present a challenge in neuroscience research because of their substantial heterogeneity in clinical presentation. While a great deal of progress has been made in understanding the neurobiology of fear and anxiety, these insights have not led to effective treatments. Understanding the relationship between phenotypic heterogeneity and the underlying biology is a critical first step in solving this problem. We show translation, reverse translation, and computational modeling can contribute to a refined, cross-species understanding of fear and anxiety as well as anxiety disorders. More specifically, we outline how animal models can be leveraged to develop testable hypotheses in humans by using targeted, cross-species approaches and ethologically informed behavioral paradigms. We discuss reverse translational approaches that can guide and prioritize animal research in nontraditional research species. Finally, we advocate for the use of computational models to harmonize cross-species and cross-methodology research into anxiety. Together, this translational neuroscience approach will help to bridge the widening gap between how we currently conceptualize and diagnose anxiety disorders, as well as aid in the discovery of better treatments for these conditions.


Asunto(s)
Trastornos de Ansiedad , Ansiedad , Neurociencias , Investigación Biomédica Traslacional , Animales , Humanos , Ansiedad/fisiopatología , Investigación Biomédica Traslacional/métodos , Neurociencias/métodos , Trastornos de Ansiedad/fisiopatología , Modelos Animales de Enfermedad , Miedo/fisiología
2.
Psychoneuroendocrinology ; 162: 106953, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38232531

RESUMEN

BACKGROUND: Evidence suggests that early life adversity is associated with maladaptive behaviors and is commonly an antecedent of stress-related psychopathology. This is particularly relevant to rearing in primate species as infant primates depend on prolonged, nurturant rearing by caregivers for normal development. To further understand the consequences of early life rearing adversity, and the relation among alterations in behavior, physiology and brain function, we assessed young monkeys that had experienced maternal separation followed by peer rearing with behavioral, endocrine and multimodal neuroimaging measures. METHODS: 50 young rhesus monkeys were studied, half of which were rejected by their mothers and peer reared, and the other half were reared by their mothers. Assessments were performed at approximately 1.8 years of age and included: threat related behavioral and cortisol responses, cerebrospinal fluid (CSF) measurements of oxytocin and corticotropin releasing hormone (CRH), and multimodal neuroimaging measures (anatomical scans, resting functional connectivity, diffusion tensor imaging, and threat-related regional glucose metabolism). RESULTS: The results demonstrated alterations across behavioral, endocrine, and neuroimaging measures in young monkeys that were reared without their mothers. At a behavioral level in response to a potential threat, peer reared animals engaged in significantly less freezing behavior (p = 0.022) along with increased self-directed behaviors (p < 0.012). Levels of oxytocin in the CSF, but not plasma, were significantly reduced in the peer reared animals (p = 0.019). No differences in plasma cortisol or CSF CRH were observed. Diffusion tensor imaging revealed significantly decreased white matter density across the brain. Exploratory correlational and permutation analyses suggest that the impact of peer rearing on behavior, endocrine and brain structural alterations are mediated by separate parallel mechanisms. CONCLUSIONS: Taken together, these results demonstrate in NHPs the importance of maternal rearing on the development of brain, behavior and hormonal systems that are linked to social functioning and adaptive responses. The findings suggest that the effects of maternal deprivation are mediated via multiple independent pathways which may account for the heterogeneity in behavioral and biological alterations observed in individuals that have experienced this early life adversity.


Asunto(s)
Experiencias Adversas de la Infancia , Humanos , Animales , Lactante , Femenino , Imagen de Difusión Tensora , Hidrocortisona , Privación Materna , Oxitocina , Hormona Liberadora de Corticotropina , Macaca mulatta , Madres
3.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798350

RESUMEN

Neuroticism/Negative Emotionality (N/NE)-the tendency to experience anxiety, fear, and other negative emotions-is a fundamental dimension of temperament with profound consequences for health, wealth, and wellbeing. Elevated N/NE is associated with a panoply of adverse outcomes, from reduced socioeconomic attainment and divorce to mental illness and premature death. Work in animals suggests that N/NE reflects heightened reactivity to uncertain threat in the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce), but the relevance of these discoveries to the human brain and temperament have remained unclear. Here we used a combination of psychometric, psychophysiological, and neuroimaging approaches to rigorously test this hypothesis in an ethnoracially diverse sample of 220 emerging adults selectively recruited to encompass a broad spectrum of N/NE. Cross-validated robust-regression analyses demonstrated that N/NE is selectively associated with heightened BST activation during the uncertain anticipation of a genuinely distressing threat. In contrast, N/NE was unrelated to BST activation during certain-threat anticipation, Ce activation during either type of threat anticipation, or BST/Ce reactivity to 'threat-related' faces. Implicit in much of the neuroimaging literature is the assumption that different threat paradigms are statistically interchangeable probes of individual differences in neural function, yet our results revealed negligible evidence of convergence between popular threat-anticipation and emotional-face tasks. These observations provide a framework for conceptualizing emotional traits and disorders; for guiding the design and interpretation of biobank and other neuroimaging studies of psychiatric risk, disease, and treatment; and for informing the next generation of mechanistic research.

4.
Proc Natl Acad Sci U S A ; 120(49): e2305775120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011550

RESUMEN

Anxiety disorders are among the most prevalent psychiatric disorders, causing significant suffering and disability. Relative to other psychiatric disorders, anxiety disorders tend to emerge early in life, supporting the importance of developmental mechanisms in their emergence and maintenance. Behavioral inhibition (BI) is a temperament that emerges early in life and, when stable and extreme, is linked to an increased risk for the later development of anxiety disorders and other stress-related psychopathology. Understanding the neural systems and molecular mechanisms underlying this dispositional risk could provide insight into treatment targets for anxiety disorders. Nonhuman primates (NHPs) have an anxiety-related temperament, called anxious temperament (AT), that is remarkably similar to BI in humans, facilitating the design of highly translational models for studying the early risk for stress-related psychopathology. Because of the recent evolutionary divergence between humans and NHPs, many of the anxiety-related brain regions that contribute to psychopathology are highly similar in terms of their structure and function, particularly with respect to the prefrontal cortex. The orbitofrontal cortex plays a critical role in the flexible encoding and regulation of threat responses, in part through connections with subcortical structures like the amygdala. Here, we explore individual differences in the transcriptional profile of cells within the region, using laser capture microdissection and single nuclear sequencing, providing insight into the molecules underlying individual differences in AT-related function of the pOFC, with a particular focus on previously implicated cellular systems, including neurotrophins and glucocorticoid signaling.


Asunto(s)
Ansiedad , Temperamento , Animales , Humanos , Temperamento/fisiología , Corteza Prefrontal , Primates/genética , Expresión Génica
5.
Proc Natl Acad Sci U S A ; 120(43): e2306475120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37847733

RESUMEN

Anxiety disorders are a major public health concern and current treatments are inadequate for many individuals. Anxiety is more common in women than men and this difference arises during puberty. Sex differences in physiological stress responses may contribute to this variability. During puberty, gonadal hormones shape brain structure and function, but the extent to which these changes affect stress sensitivity is unknown. We examined how pubertal androgens shape behavioral and neural responses to social stress in California mice (Peromyscus californicus), a model species for studying sex differences in stress responses. In adults, social defeat reduces social approach and increases social vigilance in females but not males. We show this sex difference is absent in juveniles, and that prepubertal castration sensitizes adult males to social defeat. Adult gonadectomy does not alter behavioral responses to defeat, indicating that gonadal hormones act during puberty to program behavioral responses to stress in adulthood. Calcium imaging in the medioventral bed nucleus of the stria terminalis (BNST) showed that social threats increased neural activity and that prepubertal castration generalized these responses to less threatening social contexts. These results support recent hypotheses that the BNST responds to immediate threats. Prepubertal treatment with the nonaromatizable androgen dihydrotestosterone acts in males and females to reduce the effects of defeat on social approach and vigilance in adults. These data indicate that activation of androgen receptors during puberty is critical for programming behavioral responses to stress in adulthood.


Asunto(s)
Núcleos Septales , Diferenciación Sexual , Adulto , Humanos , Masculino , Femenino , Andrógenos/farmacología , Hormonas Gonadales/farmacología , Hormonas Gonadales/fisiología , Pubertad
6.
Artículo en Inglés | MEDLINE | ID: mdl-37583705

RESUMEN

Anxious temperament, characterized by heightened behavioral and physiological reactivity to potential threat, is an early childhood risk factor for the later development of stress-related psychopathology. Using a well-validated nonhuman primate model, we tested the hypothesis that the prefrontal cortex (PFC) is critical in regulating the expression of primate anxiety-like behavior, as well as the function of subcortical components of the anxiety-related neural circuit. We performed aspiration lesions of a narrow 'strip' of the posterior orbitofrontal cortex (OFC) intended to disrupt both cortex and axons entering, exiting and coursing through the pOFC, particularly those of the uncinate fasciculus (UF), a white matter tract that courses adjacent to and through this region. The OFC is of particular interest as a potential regulatory region because of its extensive reciprocal connections with amygdala, other subcortical structures and other frontal lobe regions. We validated this lesion method by demonstrating marked lesion-induced decreases in the microstructural integrity of the UF, which contains most of the fibers that connect the ventral PFC with temporal lobe structures as well as with other frontal regions. While the lesions resulted in modest decreases in threat-related behavior, they substantially decreased metabolism in components of the circuit underlying threat processing. These findings provide evidence for the importance of structural connectivity between the PFC and key subcortical structures in regulating the functions of brain regions known to be involved in the adaptive and maladaptive expression of anxiety.

7.
Curr Res Neurobiol ; 4: 100086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397806

RESUMEN

Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.

8.
Nat Nanotechnol ; 18(10): 1241-1251, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430038

RESUMEN

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.


Asunto(s)
Encéfalo , Callithrix , Humanos , Animales , Recién Nacido , Chlorocebus aethiops , Macaca mulatta/genética , Callithrix/genética , Encéfalo/fisiología , Técnicas de Transferencia de Gen , Neuronas , Vectores Genéticos/genética
9.
PLoS One ; 18(7): e0288544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37471317

RESUMEN

Tobacco smoking imposes a staggering burden on public health, underscoring the urgency of developing a deeper understanding of the processes that maintain addiction. Clinical and experience-sampling data highlight the importance of anxious withdrawal symptoms, but the underlying neurobiology has remained elusive. Mechanistic work in animals implicates the central extended amygdala (EAc)-including the central nucleus of the amygdala and the neighboring bed nucleus of the stria terminalis-but the translational relevance of these discoveries remains unexplored. Here we leveraged a randomized trial design, well-established threat-anticipation paradigm, and multidimensional battery of assessments to understand the consequences of 24-hour nicotine abstinence. The threat-anticipation paradigm had the expected consequences, amplifying subjective distress and arousal, and recruiting the canonical threat-anticipation network. Abstinence increased smoking urges and withdrawal symptoms, and potentiated threat-evoked distress, but had negligible consequences for EAc threat reactivity, raising questions about the translational relevance of prominent animal and human models of addiction. These observations provide a framework for conceptualizing nicotine abstinence and withdrawal, with implications for basic, translational, and clinical science.


Asunto(s)
Núcleos Septales , Síndrome de Abstinencia a Sustancias , Humanos , Amígdala del Cerebelo/fisiología , Ansiedad , Miedo/fisiología , Nicotina/efectos adversos , Núcleos Septales/fisiología
10.
Nat Commun ; 14(1): 3345, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291094

RESUMEN

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.


Asunto(s)
Células Endoteliales , Roedores , Ratones , Ratas , Animales , Células Endoteliales/metabolismo , Roedores/genética , Macaca mulatta/genética , Encéfalo/metabolismo , Tropismo/genética , Ratones Noqueados , Dependovirus/metabolismo , Vectores Genéticos/genética , Transducción Genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/genética
11.
Neurosci Biobehav Rev ; 151: 105237, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209932

RESUMEN

Fear and anxiety play a central role in mammalian life, and there is considerable interest in clarifying their nature, identifying their biological underpinnings, and determining their consequences for health and disease. Here we provide a roundtable discussion on the nature and biological bases of fear- and anxiety-related states, traits, and disorders. The discussants include scientists familiar with a wide variety of populations and a broad spectrum of techniques. The goal of the roundtable was to take stock of the state of the science and provide a roadmap to the next generation of fear and anxiety research. Much of the discussion centered on the key challenges facing the field, the most fruitful avenues for future research, and emerging opportunities for accelerating discovery, with implications for scientists, funders, and other stakeholders. Understanding fear and anxiety is a matter of practical importance. Anxiety disorders are a leading burden on public health and existing treatments are far from curative, underscoring the urgency of developing a deeper understanding of the factors governing threat-related emotions.


Asunto(s)
Ansiedad , Miedo , Animales , Humanos , Ansiedad/psicología , Miedo/psicología , Trastornos de Ansiedad/psicología , Emociones , Neurobiología , Mamíferos
12.
Res Sq ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36789432

RESUMEN

Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques with improved efficiency in the brain of multiple NHP species: marmoset, rhesus macaque, and green monkey. CAP-Mac is neuron-biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques, and is vasculature-biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver (1) functional GCaMP for ex vivo calcium imaging across multiple brain areas, and (2) a cocktail of fluorescent reporters for Brainbow-like labeling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. Given its capabilities for systemic gene transfer in NHPs, CAP-Mac promises to help unlock non-invasive access to the brain.

13.
Trends Ecol Evol ; 38(4): 355-368, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36610920

RESUMEN

Light pollution is a global threat to biodiversity, especially migratory organisms, some of which traverse hemispheric scales. Research on light pollution has grown significantly over the past decades, but our review of migratory organisms demonstrates gaps in our understanding, particularly beyond migratory birds. Research across spatial scales reveals the multifaceted effects of artificial light on migratory species, ranging from local and regional to macroscale impacts. These threats extend beyond species that are active at night - broadening the scope of this threat. Emerging tools for measuring light pollution and its impacts, as well as ecological forecasting techniques, present new pathways for conservation, including transdisciplinary approaches.


Asunto(s)
Biodiversidad , Contaminación Lumínica , Animales , Conducta Animal , Aves , Migración Animal
14.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711773

RESUMEN

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds and rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and ex vivo human brain slices although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. Vasculature-secreted Hevin (a synaptogenic protein) rescued synaptic deficits in a mouse model.

15.
Neurosci Biobehav Rev ; 142: 104879, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115597

RESUMEN

To thrive in challenging environments, individuals must pursue rewards while avoiding threats. Extensive studies in animals and humans have identified the central extended amygdala (EAc)-which includes the central nucleus of the amygdala (Ce) and bed nucleus of the stria terminalis (BST)-as a conserved substrate for defensive behavior. These studies suggest the EAc influences defensive responding and assembles fearful and anxious states. This has led to the proliferation of a view that the EAc is fundamentally a defensive substrate. Yet mechanistic work in animals has implicated the EAc in numerous appetitive and consummatory processes, yielding fresh insights into the microcircuitry of survival- and emotion-relevant response selection. Coupled with the EAc's centrality in a conserved network of brain regions that encode multisensory environmental and interoceptive information, these findings suggest a broader role for the EAc as an arbiter of survival- and emotion-relevant tradeoffs for action selection. Determining how the EAc optimizes these tradeoffs promises to improve our understanding of common psychiatric illnesses such as anxiety, depression, alcohol- and substance-use disorders, and anhedonia.


Asunto(s)
Núcleo Amigdalino Central , Trastornos Mentales , Núcleos Septales , Animales , Humanos , Núcleo Amigdalino Central/fisiología , Núcleos Septales/fisiología , Miedo/fisiología , Ansiedad
17.
Psychol Sci ; 33(6): 906-924, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35657777

RESUMEN

Negative affect is a fundamental dimension of human emotion. When extreme, it contributes to a variety of adverse outcomes, from physical and mental illness to divorce and premature death. Mechanistic work in animals and neuroimaging research in humans and monkeys have begun to reveal the broad contours of the neural circuits governing negative affect, but the relevance of these discoveries to everyday distress remains incompletely understood. Here, we used a combination of approaches-including neuroimaging assays of threat anticipation and emotional-face perception and more than 10,000 momentary assessments of emotional experience-to demonstrate that individuals who showed greater activation in a cingulo-opercular circuit during an anxiety-eliciting laboratory paradigm experienced lower levels of stressor-dependent distress in their daily lives (ns = 202-208 university students). Extended amygdala activation was not significantly related to momentary negative affect. These observations provide a framework for understanding the neurobiology of negative affect in the laboratory and in the real world.


Asunto(s)
Amígdala del Cerebelo , Ansiedad , Amígdala del Cerebelo/diagnóstico por imagen , Animales , Ansiedad/psicología , Emociones/fisiología , Humanos , Imagen por Resonancia Magnética , Neuroimagen
18.
Neuron ; 110(14): 2242-2257.e6, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35643078

RESUMEN

Gene therapy offers great promise in addressing neuropathologies associated with the central and peripheral nervous systems (CNS and PNS). However, genetic access remains difficult, reflecting the critical need for the development of effective and non-invasive gene delivery vectors across species. To that end, we evolved adeno-associated virus serotype 9 (AAV9) capsid in mice and validated two capsids, AAV-MaCPNS1 and AAV-MaCPNS2, across rodent species (mice and rats) and non-human primate (NHP) species (marmosets and rhesus macaques). Intravenous administration of either AAV efficiently transduced the PNS in rodents and both the PNS and CNS in NHPs. Furthermore, we used AAV-MaCPNS1 in mice to systemically deliver the following: (1) the neuronal sensor jGCaMP8s to record calcium signal dynamics in nodose ganglia and (2) the neuronal actuator DREADD to dorsal root ganglia to mediate pain. This conclusively demonstrates the translatability of these two systemic AAVs across four species and their functional utility through proof-of-concept studies in mice.


Asunto(s)
Vectores Genéticos , Roedores , Animales , Sistema Nervioso Central , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Macaca mulatta/genética , Ratones , Ratas , Roedores/genética , Transducción Genética
19.
Mol Psychiatry ; 26(11): 6609-6618, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34035480

RESUMEN

An anxious or inhibited temperament (IT) early in life is a major risk factor for the later development of stress-related psychopathology. Starting in infancy, nonhuman primates, like humans, begin to reveal their temperament when exposed to novel situations. Here, in Study 1 we demonstrate this infant IT predicts adult behavior. Specifically, in over 600 monkeys, we found that individuals scored as inhibited during infancy were more likely to refuse treats offered by potentially-threatening human experimenters as adults. In Study 2, using a sample of over 4000 monkeys from a large multi-generational family pedigree, we demonstrate that infant IT is partially heritable. The data revealed infant IT to reflect a co-inherited substrate that manifests across multiple latent variables. Finally, in Study 3 we performed whole-genome sequencing in 106 monkeys to identify IT-associated single-nucleotide variations (SNVs). Results demonstrated a genome-wide significant SNV near CTNNA2, suggesting a molecular target worthy of additional investigation. Moreover, we observed lower p values in genes implicated in human association studies of neuroticism and depression. Together, these data demonstrate the utility of our model of infant inhibited temperament in the rhesus monkey to facilitate discovery of genes that are relevant to the long-term inherited risk to develop anxiety and depressive disorders.


Asunto(s)
Ansiedad , Temperamento , Animales , Ansiedad/genética , Trastornos de Ansiedad/genética , Variación Genética/genética , Macaca mulatta
20.
Neuroimage ; 235: 118017, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33794355

RESUMEN

Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuroimagen/métodos , Animales , Humanos , Optogenética , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA