RESUMEN
Diamond with negative electron affinity (NEA) and low work function surfaces are suggested as a suitable material for electron-generation applications in vacuum, in particular, as the emitter electrode in thermionic energy converters. Such NEA surfaces can be fabricated by evaporating and then annealing submonolayers of a suitable metal in vacuo onto bare or oxidized diamond. Among the metals studied, scandium termination of bare diamond (100) and (111) surfaces is recently reported to give the largest NEA values reported to date for a metal-diamond system, as well as being thermally stable to 900 °C. It is now shown that preoxidized (100) diamond functionalized with 0.25 monolayers of Sc also produces a large NEA value of -1.02 eV with low work functions (<3.63 eV). Moreover, this surface is thermally stable to 700 °C and can withstand exposure to air for extended periods. Here, the structural and electronic properties of this ScâO-functionalized diamond surface are characterized in detail using a variety of surface-science techniques. The results suggest that this material may be the ideal candidate for the fabrication of commercial thermionic energy conversion devices, e.g., for solar-power generation, as well as for various other electronic devices that rely upon electron emission.
RESUMEN
Ever since the ground-breaking isolation of graphene, numerous two-dimensional (2D) materials have emerged with 2D metal dihalides gaining significant attention due to their intriguing electrical and magnetic properties. In this study, we introduce an innovative approach via anhydrous solvent-induced recrystallization of bulk powders to obtain crystals of metal dihalides (MX2, with M = Cu, Ni, Co and X = Br, Cl, I), which can be exfoliated to 2D flakes. We demonstrate the effectiveness of our method using CuBr2 as an example, which forms large layered crystals. We investigate the structural properties of both the bulk and 2D CuBr2 using X-ray diffraction, along with Raman scattering and optical spectroscopy, revealing its quasi-1D chain structure, which translates to distinct emission and scattering characteristics. Furthermore, microultraviolet photoemission spectroscopy and electronic transport reveal the electronic properties of CuBr2 flakes, including their valence band structure. We extend our methodology to other metal halides and assess the stability of the metal halide flakes in controlled environments. We show that optical contrast can be used to characterize the flake thicknesses for these materials. Our findings demonstrate the versatility and potential applications of the proposed methodology for preparing and studying 2D metal halide flakes.
RESUMEN
Cu2ZnSn(S,Se)4 (CZTSSe) is a promising material for thin-film photovoltaics, however, the open-circuit voltage (VOC) deficit of CZTSSe prevents the device performance from exceeding 13% conversion efficiency. CZTSSe is a heavily compensated material that is rich in point defects and prone to the formation of secondary phases. The landscape of these defects is complex and some mitigation is possible by employing non-stoichiometric conditions. Another route used to reduce the effects of undesirable defects is the doping and alloying of the material to suppress certain defects and improve crystallization, such as with germanium. The majority of works deposit Ge adjacent to a stacked metallic precursor deposited by physical vapour deposition before annealing in a selenium rich atmosphere. Here, we use an established hot-injection process to synthesise Cu2ZnSnS4 nanocrystals of a pre-determined composition, which are subsequently doped with Ge during selenisation to aid recrystallisation and reduce the effects of Sn species. Through Ge incorporation, we demonstrate structural changes with a negligible change in the energy bandgap but substantial increases in the crystallinity and grain morphology, which are associated with a Ge-Se growth mechanism, and gains in both the VOC and conversion efficiency. We use surface energy-filtered photoelectron emission microscopy (EF-PEEM) to map the surface work function terrains and show an improved electronic landscape, which we attribute to a reduction in the segregation of low local effective work function (LEWF) Sn(II) chalcogenide phases.
RESUMEN
Thermionic emission relies on the low work function and negative electron affinity of the, often functionalized, surface of the emitting material. However, there is little understanding of the interplay between thermionic emission and temperature-driven dynamic surface transformation processes as these are not represented on the traditional Richardson-Dushman equation for thermionic emission. Here, we show a new model for thermionic emission that can reproduce the effect of dynamic surface changes on the electron emission and correlate the components of the thermionic emission with specific surface reconstruction phases on the surface of the emitter. We use hydrogenated <100> single-crystal and polycrystalline diamonds as thermionic emitters to validate our model, which shows excellent agreement with the experimental data and could be applicable to other emitting materials. Furthermore, we find that tailoring the coverage of specific structures of the C(100)-(2 × 1):H surface reconstruction could increase the thermionic emission of diamond by several orders of magnitude.
RESUMEN
Thermionic emitting materials are relevant for several technological applications like electron guns, X-ray sources, or thermionic energy converters. As new materials and surface functionalisations that enable thermionic emission are developed, it is essential to be able to test them in a repeatable and reliable manner. Here, we present a CO2 laser-heated system for thermionic tests that can be used to test the thermionic emission current of different materials regardless of the optical properties or form factor. Our system can reach sample temperatures of T ≈ 1000 °C and can follow pre-programmed heating profiles. Additionally, a double thermo-electrical decoupling provides a very low electrical noise environment while keeping the sample heat loss to a minimum. Experimental data on sample temperature and thermionic current from a hydrogen terminated single crystal diamond are presented and discussed.
RESUMEN
The photoemission electron microscopy and x-ray photoemission spectroscopy were utilized for the study of anodized epitaxial graphene (EG) on silicon carbide as a fundamental aspect of the oxygen evolution reaction on graphitic materials. The high-resolution analysis of surface morphology and composition quantified the material transformation during the anodization. We investigated the surface with lateral resolution <150 nm, revealing significant transformations on the EG and the role of multilayer edges in increasing the film capacitance.
RESUMEN
The performance of Cu2ZnSn(S,Se)4 thin-film solar cells, commonly referred to as kesterite or CZTSSe, is limited by open-circuit voltage (VOC) values less than 60% of the maximum theoretical limit. In the present study, we employ energy-filtered photoemission microscopy to visualize nanoscale shunting paths in solution-processed CZTSSe films, which limit the VOC of cells to approximately 400 mV. These studies unveil areas of local effective work function (LEWF) narrowly distributed around 4.9 eV, whereas other portions show hotspots with LEWF as low as 4.2 eV. Localized valence band spectra and density functional theory calculations allow rationalizing the LEWF maps in terms of the CZTSSe effective work function broadened by potential energy fluctuations and nanoscale Sn(S,Se) phases.
RESUMEN
Substitutional clusters of multiple light element dopants are a promising route to the elusive shallow donor in diamond. To understand the behaviour of co-dopants, this report presents an extensive first principles study of possible clusters of boron and nitrogen. We use periodic hybrid density functional calculations to predict the geometry, stability and electronic excitation energies of a range of clusters containing up to five N and/or B atoms. Excitation energies from hybrid calculations are compared to those from the empirical marker method, and are in good agreement. When a boron-rich or nitrogen-rich cluster consists of three to five atoms, the minority dopant element-a nitrogen or boron atom respectively-can be in either a central or peripheral position. We find B-rich clusters are most stable when N sits centrally, whereas N-rich clusters are most stable with B in a peripheral position. In the former case, excitation energies mimic those of the single boron acceptor, while the latter produce deep levels in the band-gap. Implications for probable clusters that would arise in high-pressure high-temperature co-doped diamond and their properties are discussed.
RESUMEN
In this paper, a perspective on the application of Spatially- and Angle-Resolved PhotoEmission Spectroscopy (ARPES) for the study of two-dimensional (2D) materials is presented. ARPES allows the direct measurement of the electronic band structure of materials generating extremely useful insights into their electronic properties. The possibility to apply this technique to 2D materials is of paramount importance because these ultrathin layers are considered fundamental for future electronic, photonic and spintronic devices. In this review an overview of the technical aspects of spatially localized ARPES is given along with a description of the most advanced setups for laboratory and synchrotron-based equipment. This technique is sensitive to the lateral dimensions of the sample. Therefore, a discussion on the preparation methods of 2D material is presented. Some of the most interesting results obtained by ARPES are reported in three sections including: graphene, transition metal dichalcogenides (TMDCs) and 2D heterostructures. Graphene has played a key role in ARPES studies because it inspired the use of this technique with other 2D materials. TMDCs are presented for their peculiar transport, optical and spin properties. Finally, the section featuring heterostructures highlights a future direction for research into 2D material structures.
RESUMEN
The self-assembly of two emeraldine base tetra(aniline) derivatives is investigated using scanning tunneling microscopy. A combination of the scanning tunneling microscopy data and calculations reveals the presence of predicted cis/trans isomerism in this oxidation state. This isomerism is shown to hinder self-assembly into ordered structures, and provides indications as to why the properties of these materials, and their parent polymer, polyaniline, remain unfulfilled.
RESUMEN
The electrochemical properties of two-dimensional assemblies of 500 nm type Ib diamond particles are investigated as a function of their surface oxidation state. High Pressure High Temperature particles are sequentially exposed to a hot strong acid bath and to H(2) plasma in order to generate oxygen (ODP) and hydrogen surface terminations (HDP). Changes in the surface composition following the chemical treatments are confirmed by FTIR. Electrophoretic mobility measurements show that the diamond particles exhibit a negative surface charge at pH above 7 independently of the surface termination. Oxidation in the acid bath and subsequent reduction in the H(2) plasma only affects about 30% of the particle surface charge. The intrinsic negative charge allows the formation of 2D assemblies by electrostatic adsorption on poly(diallyldimethylammonium chloride) (PDADMAC) modified In-doped SnO(2) electrodes (ITO). The particle number density in the assembly was controlled by the adsorption time up to a maximum coverage of ca. 40%. Cyclic voltammetry in the absence of redox species in solution show that the acid treatment effectively removes responses associated with sp(2) carbon impurities, resulting in a potential independent capacitive signal. On the other hand, HDP assemblies are characterized by a charging process at a potential above 0.1 V vs Ag/AgCl. These responses are associated with hole-injection into the valence band edge which is shifted to approximately -4.75 eV vs vacuum upon hydrogenation. Information concerning the position of the valence band edge as well as hole number density at the HDP surface as a function of the applied potential are extracted from the electrochemical analysis.
Asunto(s)
Diamante/química , Electroquímica/métodos , Nanopartículas/químicaRESUMEN
Experimental and modeling studies of the gas-phase chemistry occurring in dilute, hot filament (HF) activated B2H6/H2 and B2H6/CH4/H2 gas mixtures are reported. Spatially resolved relative number densities of B (and H) atoms have been measured by resonance enhanced multiphoton ionization methods, as a function of process conditions (e.g. the HF material and its temperature, the B2H6/H2 mixing ratio, and the presence (or not) of added CH4). Three-dimensional modeling of the H/B chemistry prevailing in such HF activated gas mixtures using a simplified representation of the gas phase chemistry succeeds in reproducing all of the experimentally observed trends, and in illustrating the key role of the "H-shifting" reactions BHx + H <= => BHx-1 + H2 (x = 1-3) in enabling rapid interconversion between the various BHx (x = 0-3) species. CH4 addition, at partial pressures appropriate for growth of boron-doped diamond by chemical vapor deposition methods, leads to approximately 30% reduction in the measured B atom signal near the HF. The modeling suggests that this is mainly due to concomitant H atom depletion near the HF, but it also allows us a first assessment of the possible contributions from B/C coupling reactions upon CH4 addition to HF activated B2H6/H2 gas mixtures.