Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 292(26): 10912-10925, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28490636

RESUMEN

Cytochrome c oxidase (CcO) is the last electron acceptor in the respiratory chain. The CcO core is formed by mitochondrial DNA-encoded Cox1, Cox2, and Cox3 subunits. Cox1 synthesis is highly regulated; for example, if CcO assembly is blocked, Cox1 synthesis decreases. Mss51 activates translation of COX1 mRNA and interacts with Cox1 protein in high-molecular-weight complexes (COA complexes) to form the Cox1 intermediary assembly module. Thus, Mss51 coordinates both Cox1 synthesis and assembly. We previously reported that the last 15 residues of the Cox1 C terminus regulate Cox1 synthesis by modulating an interaction of Mss51 with Cox14, another component of the COA complexes. Here, using site-directed mutagenesis of the mitochondrial COX1 gene from Saccharomyces cerevisiae, we demonstrate that mutations P521A/P522A and V524E disrupt the regulatory role of the Cox1 C terminus. These mutations, as well as C terminus deletion (Cox1ΔC15), reduced binding of Mss51 and Cox14 to COA complexes. Mss51 was enriched in a translationally active form that maintains full Cox1 synthesis even if CcO assembly is blocked in these mutants. Moreover, Cox1ΔC15, but not Cox1-P521A/P522A and Cox1-V524E, promoted formation of aberrant supercomplexes in CcO assembly mutants lacking Cox2 or Cox4 subunits. The aberrant supercomplex formation depended on the presence of cytochrome b and Cox3, supporting the idea that supercomplex assembly factors associate with Cox3 and demonstrating that supercomplexes can be formed even if CcO is inactive and not fully assembled. Our results indicate that the Cox1 C-terminal end is a key regulator of CcO biogenesis and that it is important for supercomplex formation/stability.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación Missense , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Genetics ; 192(4): 1203-34, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23212899

RESUMEN

The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfatasas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Transporte de Proteínas/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mitochondrion ; 12(3): 381-90, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22349564

RESUMEN

Complexes III and IV of the mitochondrial respiratory chain contain a few key subunits encoded by the mitochondrial genome. In Saccharomyces cerevisiae, fifteen mRNA-specific translational activators control mitochondrial translation, of which five are conserved in Schizosaccharomyces pombe. These include homologs of Cbp3, Cbp6 and Mss51 that participate in translation and the post-translational steps leading to the assembly of respiratory complexes III and IV. In this study we show that in contrast to budding yeast, Cbp3, Cbp6 and Mss51 from S. pombe are not required for the translation of mitochondrial mRNAs, but fulfill post-translational functions, thus probably accounting for their conservation.


Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Biogénesis de Organelos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Genetics ; 190(2): 559-67, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22095077

RESUMEN

The Cox2 subunit of Saccharomyces cerevisiae cytochrome c oxidase is synthesized in the mitochondrial matrix as a precursor whose leader peptide is rapidly processed by the inner membrane protease following translocation to the intermembrane space. Processing is chaperoned by Cox20, an integral inner membrane protein whose hydrophilic domains are located in the intermembrane space, and Cox20 remains associated with mature, unassembled Cox2. The Cox2 C-tail domain is exported post-translationally by the highly conserved translocase Cox18 and associated proteins. We have found that Cox20 is required for efficient export of the Cox2 C-tail. Furthermore, Cox20 interacts by co-immune precipitation with Cox18, and this interaction requires the presence of Cox2. We therefore propose that Cox20 binding to Cox2 on the trans side of the inner membrane accelerates dissociation of newly exported Cox2 from the Cox18 translocase, promoting efficient cycling of the translocase. The requirement for Cox20 in cytochrome c oxidase assembly and respiratory growth is partially bypassed by yme1, mgr1 or mgr3 mutations, each of which reduce i-AAA protease activity in the intermembrane space. Thus, Cox20 also appears to stabilize unassembled Cox2 against degradation by the i-AAA protease. Pre-Cox2 leader peptide processing by Imp1 occurs in the absence of Cox20 and i-AAA protease activity, but is greatly reduced in efficiency. Under these conditions some mature Cox2 is assembled into cytochrome c oxidase allowing weak respiratory growth. Thus, the Cox20 chaperone has important roles in leader peptide processing, C-tail export, and stabilization of Cox2.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo IV de Transporte de Electrones/química , Endopeptidasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutación , Unión Proteica , Señales de Clasificación de Proteína , Estabilidad Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Nat Rev Mol Cell Biol ; 12(1): 14-20, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21179059

RESUMEN

Mitochondria maintain genome and translation machinery to synthesize a small subset of subunits of the oxidative phosphorylation system. To build up functional enzymes, these organellar gene products must assemble with imported subunits that are encoded in the nucleus. New findings on the early steps of cytochrome c oxidase assembly reveal how the mitochondrial translation of its core component, cytochrome c oxidase subunit 1 (Cox1), is directly coupled to the assembly of this respiratory complex.


Asunto(s)
ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Animales , ADN Mitocondrial/metabolismo , Complejo IV de Transporte de Electrones/genética , Humanos , Modelos Biológicos , Biosíntesis de Proteínas/genética
7.
J Biol Chem ; 285(45): 34382-9, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20807763

RESUMEN

Synthesis of the largest cytochrome c oxidase (CcO) subunit, Cox1, on yeast mitochondrial ribosomes is coupled to assembly of CcO. The translational activator Mss51 is sequestered in early assembly intermediate complexes by an interaction with Cox14 that depends on the presence of newly synthesized Cox1. If CcO assembly is prevented, the level of Mss51 available for translational activation is reduced. We deleted the C-terminal 11 or 15 residues of Cox1 by site-directed mutagenesis of mtDNA. Although these deletions did not prevent respiratory growth of yeast, they eliminated the assembly-feedback control of Cox1 synthesis. Furthermore, these deletions reduced the strength of the Mss51-Cox14 interaction as detected by co-immunoprecipitation, confirming the importance of the Cox1 C-terminal residues for Mss51 sequestration. We surveyed a panel of mutations that block CcO assembly for the strength of their effect on Cox1 synthesis, both by pulse labeling and expression of the ARG8(m) reporter fused to COX1. Deletion of the nuclear gene encoding Cox6, one of the first subunits to be added to assembling CcO, caused the most severe reduction in Cox1 synthesis. Deletion of the C-terminal 15 amino acids of Cox1 increased Cox1 synthesis in the presence of each of these mutations, except pet54. Our data suggest a novel activity of Pet54 required for normal synthesis of Cox1 that is independent of the Cox1 C-terminal end.


Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
8.
PLoS Biol ; 8(3): e1000328, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20231875

RESUMEN

In eukaryotes, fumarase (FH in human) is a well-known tricarboxylic-acid-cycle enzyme in the mitochondrial matrix. However, conserved from yeast to humans is a cytosolic isoenzyme of fumarase whose function in this compartment remains obscure. A few years ago, FH was surprisingly shown to underlie a tumor susceptibility syndrome, Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC). A biallelic inactivation of FH has been detected in almost all HLRCC tumors, and therefore FH was suggested to function as a tumor suppressor. Recently it was suggested that FH inhibition leads to elevated intracellular fumarate, which in turn acts as a competitive inhibitor of HPH (HIF prolyl hydroxylase), thereby causing stabilization of HIF (Hypoxia-inducible factor) by preventing proteasomal degradation. The transcription factor HIF increases the expression of angiogenesis regulated genes, such as VEGF, which can lead to high microvessel density and tumorigenesis. Yet this mechanism does not fully explain the large cytosolic population of fumarase molecules. We constructed a yeast strain in which fumarase is localized exclusively to mitochondria. This led to the discovery that the yeast cytosolic fumarase plays a key role in the protection of cells from DNA damage, particularly from DNA double-strand breaks. We show that the cytosolic fumarase is a member of the DNA damage response that is recruited from the cytosol to the nucleus upon DNA damage induction. This function of fumarase depends on its enzymatic activity, and its absence in cells can be complemented by high concentrations of fumaric acid. Our findings suggest that fumarase and fumaric acid are critical elements of the DNA damage response, which underlies the tumor suppressor role of fumarase in human cells and which is most probably HIF independent. This study shows an exciting crosstalk between primary metabolism and the DNA damage response, thereby providing a scenario for metabolic control of tumor propagation.


Asunto(s)
Núcleo Celular/metabolismo , Citosol/metabolismo , Daño del ADN , Fumarato Hidratasa/metabolismo , Isoenzimas/metabolismo , Mitocondrias/enzimología , Fumarato Hidratasa/genética , Fumaratos/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoenzimas/genética , Neoplasias Renales/enzimología , Neoplasias Renales/genética , Leiomiomatosis/enzimología , Leiomiomatosis/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
Mol Biol Cell ; 20(20): 4371-80, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19710419

RESUMEN

Functional interactions of the translational activator Mss51 with both the mitochondrially encoded COX1 mRNA 5'-untranslated region and with newly synthesized unassembled Cox1 protein suggest that it has a key role in coupling Cox1 synthesis with assembly of cytochrome c oxidase. Mss51 is present at levels that are near rate limiting for expression of a reporter gene inserted at COX1 in mitochondrial DNA, and a substantial fraction of Mss51 is associated with Cox1 protein in assembly intermediates. Thus, sequestration of Mss51 in assembly intermediates could limit Cox1 synthesis in wild type, and account for the reduced Cox1 synthesis caused by most yeast mutations that block assembly. Mss51 does not stably interact with newly synthesized Cox1 in a mutant lacking Cox14, suggesting that the failure of nuclear cox14 mutants to decrease Cox1 synthesis, despite their inability to assemble cytochrome c oxidase, is due to a failure to sequester Mss51. The physical interaction between Mss51 and Cox14 is dependent upon Cox1 synthesis, indicating dynamic assembly of early cytochrome c oxidase intermediates nucleated by Cox1. Regulation of COX1 mRNA translation by Mss51 seems to be an example of a homeostatic mechanism in which a positive effector of gene expression interacts with the product it regulates in a posttranslational assembly process.


Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Regulación Fúngica de la Expresión Génica/fisiología , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/fisiología , Regiones no Traducidas 5' , Complejo IV de Transporte de Electrones/genética , Genes Reporteros , Genes Sintéticos , Homeostasis , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/fisiología , Biosíntesis de Proteínas/fisiología , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional/fisiología , Subunidades de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
10.
Methods Enzymol ; 456: 491-506, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19348906

RESUMEN

Cytochrome b is a pivotal protein subunit of the cytochrome bc(1) complex and forms the ubiquinol oxidation site in the enzyme that is generally thought to be the primary site where electrons are aberrantly diverted from the enzyme, reacting with oxygen to form superoxide anion. In addition, recent studies have shown that mutations in cytochrome b can substantially increase rates of oxygen radical formation by the bc(1) complex. It would, thus, be advantageous to be able to manipulate cytochrome b by mutagenesis of the cytochrome b gene to better understand the role of cytochrome b in oxygen radical formation. Cytochrome b is encoded in the mitochondrial genome in eukaryotic cells, and introduction of point mutations into the gene is generally cumbersome because of the tedious screening process for positive clones. In addition, previously it has been especially difficult to introduce point mutations that lead to loss of respiratory function, as might be expected of mutations that markedly enhance oxygen radical formation. To more efficiently introduce amino acid changes into cytochrome b we have devised a method for mutagenesis of the Saccharomyces cerevisiae mitochondrial cytochrome b gene that uses a recoded ARG8 gene as a "placeholder" for the wild-type b gene. In this method ARG8, a gene that is normally encoded by nuclear DNA, replaces the naturally occurring mitochondrial cytochrome b gene, resulting in ARG8 expressed from the mitochondrial genome (ARG8(m)). Subsequently replacing ARG8(m) with mutated versions of cytochrome b results in arginine auxotrophy. Respiratory-competent cytochrome b mutants can be selected directly by virtue of their ability to restore growth on nonfermentable substrates. If the mutated cytochrome b is nonfunctional, the presence of the COX2 respiratory gene marker on the mitochondrial transforming plasmid enables screening for cytochrome b mutants with a stringent respiratory deficiency (mit(-)).


Asunto(s)
Citocromos b/metabolismo , Mitocondrias/enzimología , Mutación Puntual , Especies Reactivas de Oxígeno/metabolismo , Regiones no Traducidas 3' , Secuencia de Bases , Ciclooxigenasa 2/genética , Cartilla de ADN , Intrones , Plásmidos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo
11.
Genetics ; 182(2): 519-28, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19307606

RESUMEN

Members of the Oxa1/YidC/Alb3 family of protein translocases are essential for assembly of energy-transducing membrane complexes. In Saccharomyces cerevisiae, Oxa1 and its paralog, Cox18, are required for assembly of Cox2, a mitochondrially encoded subunit of cytochrome c oxidase. Oxa1 is known to be required for cotranslational export of the Cox2 N-terminal domain across the inner mitochondrial membrane, while Cox18 is known to be required for post-translational export of the Cox2 C-tail domain. We find that overexpression of Oxa1 does not compensate for the absence of Cox18 at the level of respiratory growth. However, it does promote some translocation of the Cox2 C-tail domain across the inner membrane and causes increased accumulation of Cox2, which remains unassembled. This result suggests that Cox18 not only translocates the C-tail, but also must deliver it in a distinct state competent for cytochrome oxidase assembly. We identified respiring mutants from a cox18Delta strain overexpressing OXA1, whose respiratory growth requires overexpression of OXA1. The recessive nuclear mutations allow some assembly of Cox2 into cytochrome c oxidase. After failing to identify these mutations by methods based on transformation, we successfully located them to MGR1 and MGR3 by comparative hybridization to whole-genome tiling arrays and microarray-assisted bulk segregant analysis followed by linkage mapping. While Mgr1 and Mgr3 are known to associate with the Yme1 mitochondrial inner membrane i-AAA protease and to participate in membrane protein degradation, their absence does not appear to stabilize Cox2 under these conditions. Instead, Yme1 probably chaperones the folding and/or assembly of Oxa1-exported Cox2 in the absence of Mrg1 or Mgr3, since respiratory growth and cytochrome c oxidase assembly in a cox18 mgr3 double-mutant strain overexpressing OXA1 is YME1 dependent.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Respiración de la Célula/genética , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Fenotipo , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
12.
Biochim Biophys Acta ; 1793(1): 60-70, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18522806

RESUMEN

Members of the family of the polytopic inner membrane proteins are related to Saccharomyces cerevisiae Oxa1 function in the assembly of energy transducing complexes of mitochondria and chloroplasts. Here we focus on the two mitochondrial members of this family, Oxa1 and Cox18, reviewing studies on their biogenesis as well as their functions, reflected in the phenotypic consequences of their absence in various organisms. In yeast, cytochrome c oxidase subunit II (Cox2) is a key substrate of these proteins. Oxa1 is required for co-translational translocation and insertion of Cox2, while Cox18 is necessary for the export of its C-terminal domain. Genetic and biochemical strategies have been used to investigate the functions of distinct domains of Oxa1 and to identify its partners in protein insertion/translocation. Recent work on the related bacterial protein YidC strongly indicates that it is capable of functioning alone as a translocase for hydrophilic domains and an insertase for TM domains. Thus, the Oxa1 and Cox18 probably catalyze these reactions directly in a co- and/or posttranslational way. In various species, Oxa1 appears to assist in the assembly of different substrate proteins, although it is still unclear how Oxa1 recognizes its substrates, and whether additional factors participate in this beyond its direct interaction with mitochondrial ribosomes, demonstrated in S. cerevisiae. Oxa1 is capable of assisting posttranslational insertion and translocation in isolated mitochondria, and Cox18 may posttranslationally translocate its only known substrate, the Cox2 C-terminal domain, in vivo. Detailed understanding of the mechanisms of action of these two proteins must await the resolution of their structure in the membrane and the development of a true in vitro mitochondrial translation system.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Transporte de Electrón , Escherichia coli/metabolismo , Evolución Molecular , Humanos , Saccharomyces cerevisiae/metabolismo
13.
Biochim Biophys Acta ; 1777(9): 1147-56, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18498758

RESUMEN

We have previously used inhibitors interacting with the Qn site of the yeast cytochrome bc(1) complex to obtain yeast strains with resistance-conferring mutations in cytochrome b as a means to investigate the effects of amino acid substitutions on Qn site enzymatic activity [M.G. Ding, J.-P. di Rago, B.L. Trumpower, Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevisiae with mutants resistant to ilicicolin H, a novel Qn site inhibitor, J. Biol. Chem. 281 (2006) 36036-36043.]. Although the screening produced various interesting cytochrome b mutations, it depends on the availability of inhibitors and can only reveal a very limited number of mutations. Furthermore, mutations leading to a respiratory deficient phenotype remain undetected. We therefore devised an approach where any type of mutation can be efficiently introduced in the cytochrome b gene. In this method ARG8, a gene that is normally encoded by nuclear DNA, replaces the naturally occurring mitochondrial cytochrome b gene, resulting in ARG8 expressed from the mitochondrial genome (ARG8(m)). Subsequently replacing ARG8(m) with mutated versions of cytochrome b results in arginine auxotrophy. Respiratory competent cytochrome b mutants can be selected directly by virtue of their ability to restore growth on non-fermentable substrates. If the mutated cytochrome b is non-functional, the presence of the COX2 respiratory gene marker on the mitochondrial transforming plasmid enables screening for cytochrome b mutants with a stringent respiratory deficiency (mit(-)). With this system, we created eight different yeast strains containing point mutations at three different codons in cytochrome b affecting center N. In addition, we created three point mutations affecting arginine 79 in center P. This is the first time mutations have been created for three of the loci presented here, and nine of the resulting mutants have never been described before.


Asunto(s)
Citocromos b/genética , Citocromos b/metabolismo , Mutagénesis , Mutación/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Medios de Cultivo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fermentación , Genes Fúngicos , Vectores Genéticos , Intrones/genética , Mitocondrias/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Transaminasas/metabolismo
14.
Mol Cell Biol ; 27(13): 4664-73, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17452441

RESUMEN

The N-terminal and C-terminal domains of mitochondrially synthesized cytochrome c oxidase subunit II, Cox2, are translocated through the inner membrane to the intermembrane space (IMS). We investigated the distinct mechanisms of N-tail and C-tail export by analysis of epitope-tagged Cox2 variants encoded in Saccharomyces cerevisiae mitochondrial DNA. Both the N and C termini of a truncated protein lacking the Cox2 C-terminal domain were translocated to the IMS via a pathway dependent upon the conserved translocase Oxa1. The topology of this Cox2 variant, accumulated at steady state, was largely but not completely unaffected in mutants lacking proteins required for export of the C-tail domain, Cox18 and Mss2. C-tail export was blocked by truncation of the last 40 residues from the C-tail domain, indicating that sequence and/or structural features of this domain are required for its translocation. Mss2, a peripheral protein bound to the inner surface of the inner membrane, coimmunoprecipitated with full-length newly synthesized Cox2, whose leader peptide had already been cleaved in the IMS. Our data suggest that the C-tail domain is recognized posttranslationally by a specialized translocation apparatus after the N-tail has been translocated by Oxa1.


Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/química , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Inmunoprecipitación , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Termodinámica
16.
Genetics ; 175(3): 1117-26, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17194786

RESUMEN

Rsm28p is a dispensable component of the mitochondrial ribosomal small subunit in Saccharomyces cerevisiae that is not related to known proteins found in bacteria. It was identified as a dominant suppressor of certain mitochondrial mutations that reduced translation of the COX2 mRNA. To explore further the function of Rsm28p, we isolated mutations in other genes that caused a synthetic respiratory defective phenotype together with rsm28Delta. These mutations identified three nuclear genes: IFM1, which encodes the mitochondrial translation initiation factor 2 (IF2); FMT1, which encodes the methionyl-tRNA-formyltransferase; and RMD9, a gene of unknown function. The observed genetic interactions strongly suggest that the ribosomal protein Rsm28p and Ifm1p (IF2) have similar and partially overlapping functions in yeast mitochondrial translation initiation. Rmd9p, bearing a TAP-tag, was localized to mitochondria and exhibited roughly equal distribution in soluble and membrane-bound fractions. A small fraction of the Rmd9-TAP sedimented together with presumed monosomes, but not with either individual ribosomal subunit. Thus, Rmd9 is not a ribosomal protein, but may be a novel factor associated with initiating monosomes. The poorly respiring rsm28Delta, rmd9-V363I double mutant did not have a strong translation-defective phenotype, suggesting that Rmd9p may function upstream of translation initiation, perhaps at the level of localization of mitochondrially coded mRNAs.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Transferasas de Hidroximetilo y Formilo/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Respiración de la Célula/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales , Mutagénesis , Proteínas Ribosómicas , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
17.
Mol Biol Cell ; 18(2): 523-35, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17135289

RESUMEN

Expression of yeast mitochondrial genes depends on specific translational activators acting on the 5'-untranslated region of their target mRNAs. Mss51p is a translational factor for cytochrome c oxidase subunit 1 (COX1) mRNA and a key player in down-regulating Cox1p expression when subunits with which it normally interacts are not available. Mss51p probably acts on the 5'-untranslated region of COX1 mRNA to initiate translation and on the coding sequence itself to facilitate elongation. Mss51p binds newly synthesized Cox1p, an interaction that could be necessary for translation. To gain insight into the different roles of Mss51p on Cox1p biogenesis, we have analyzed the properties of a new mitochondrial protein, mp15, which is synthesized in mss51 mutants and in cytochrome oxidase mutants in which Cox1p translation is suppressed. The mp15 polypeptide is not detected in cox14 mutants that express Cox1p normally. We show that mp15 is a truncated translation product of COX1 mRNA whose synthesis requires the COX1 mRNA-specific translational activator Pet309p. These results support a key role for Mss51p in translationally regulating Cox1p synthesis by the status of cytochrome oxidase assembly.


Asunto(s)
Citocromos c1/biosíntesis , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Regiones no Traducidas 5'/metabolismo , Cloranfenicol/farmacología , Citocromos c1/genética , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Mutación , Proteínas Nucleares/genética , Factores de Iniciación de Péptidos , Péptidos/análisis , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética/genética
18.
Methods Mol Biol ; 372: 153-66, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18314724

RESUMEN

Saccharomyces cerevisiae is currently the only species in which genetic transformation of mitochondria can be used to generate a wide variety of defined alterations in mitochondrial deoxyribonucleic acid (mtDNA). DNA sequences can be delivered into yeast mitochondria by microprojectile bombardment (biolistic transformation) and subsequently incorporated into mtDNA by the highly active homologous recombination machinery present in the organelle. Although transformation frequencies are relatively low, the availability of strong mitochondrial selectable markers for the yeast system, both natural and synthetic, makes the isolation of transformants routine. The strategies and procedures reviewed here allow the researcher to insert defined mutations into endogenous mitochondrial genes and to insert new genes into mtDNA. These methods provide powerful in vivo tools for the study of mitochondrial biology.


Asunto(s)
Biolística/métodos , ADN Mitocondrial/genética , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Transformación Genética , Precipitación Química , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rho/metabolismo
19.
Mol Microbiol ; 56(6): 1689-704, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15916616

RESUMEN

Dramatically elevated levels of the COX2 mitochondrial mRNA-specific translational activator protein Pet111p interfere with respiratory growth and cytochrome c oxidase accumulation. The respiratory phenotype appears to be caused primarily by inhibition of the COX1 mitochondrial mRNA translation, a finding confirmed by lack of cox1Delta::ARG8(m) reporter mRNA translation. Interference with Cox1p synthesis depends to a limited extent upon increased translation of the COX2 mRNA, but is largely independent of it. Respiratory growth is partially restored by a chimeric COX1 mRNA bearing the untranslated regions of the COX2 mRNA, and by overproduction of the COX1 mRNA-specific activators, Pet309p and Mss51p. These results suggest that excess Pet111p interacts unproductively with factors required for normal COX1 mRNA translation. Certain missense mutations in PET111 alleviate the interference with COX1 mRNA translation but do not completely restore normal respiratory growth in strains overproducing Pet111p, suggesting that elevated Pet111p also perturbs assembly of newly synthesized subunits into active cytochrome c oxidase. Thus, this severe imbalance in translational activator levels appears to cause multiple problems in mitochondrial gene expression, reflecting the dual role of balanced translational activators in cooperatively regulating both the levels and locations of organellar translation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclooxigenasa 1 , Ciclooxigenasa 2 , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales , Proteínas Nucleares/genética , Factores de Iniciación de Péptidos , Prostaglandina-Endoperóxido Sintasas/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mitocondrial , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
20.
Eukaryot Cell ; 4(2): 337-45, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15701796

RESUMEN

Mutations affecting the RNA sequence of the first 10 codons of the Saccharomyces cerevisiae mitochondrial gene COX2 strongly reduce translation of the mRNA, which encodes the precursor of cytochrome c oxidase subunit II. A dominant chromosomal mutation that suppresses these defects is an internal in-frame deletion of 67 codons from the gene YDR494w. Wild-type YDR494w encodes a 361-residue polypeptide with no similarity to proteins of known function. The epitope-tagged product of this gene, now named RSM28, is both peripherally associated with the inner surface of the inner mitochondrial membrane and soluble in the matrix. Epitope-tagged Rsm28p from Triton X-100-solubilized mitochondria sedimented with the small subunit of mitochondrial ribosomes in a sucrose gradient containing 500 mM NH4Cl. Complete deletion of RSM28 caused only a modest decrease in growth on nonfermentable carbon sources in otherwise wild-type strains and enhanced the respiratory defect of the suppressible cox2 mutations. The rsm28 null mutation also reduced translation of an ARG8m reporter sequence inserted at the COX1, COX2, and COX3 mitochondrial loci. We tested the ability of RSM28-1 to suppress a variety of cox2 and cox3 mutations and found that initiation codon mutations in both genes were suppressed. We conclude that Rsm28p is a dispensable small-subunit mitochondrial ribosomal protein previously undetected in systematic investigations of these ribosomes, with a positive role in translation of several mitochondrial mRNAs.


Asunto(s)
ADN Mitocondrial , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alelos , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/genética , Mutación , Señales de Clasificación de Proteína/genética , Subunidades de Proteína/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...