Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(3)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39017429

RESUMEN

We investigated the structure of ice under nanoporous confinement in periodic mesoporous organosilicas (PMOs) with different organic functionalities and pore diameters between 3.4 and 4.9 nm. X-ray scattering measurements of the system were performed at temperatures between 290 and 150 K. We report the emergence of ice I with both hexagonal and cubic characteristics in different porous materials, as well as an alteration of the lattice parameters when compared to bulk ice. This effect is dependent on the pore diameter and the surface chemistry of the respective PMO. Investigations regarding the orientation of hexagonal ice crystals relative to the pore wall using x-ray cross correlation analysis reveal one or more discrete preferred orientation in most of the samples. For a pore diameter of around 3.8 nm, stronger correlation peaks are present in more hydrophilically functionalized pores and seem to be connected to stronger shifts in the lattice parameters.

2.
Acc Chem Res ; 56(17): 2278-2285, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37607332

RESUMEN

ConspectusThe ligand shells of colloidal nanoparticles (NPs) can serve different purposes. In general, they provide colloidal stability by introducing steric repulsion between NPs. In the context of biological applications, the ligand shell plays a critical role in targeting, enabling NPs to achieve specific biodistributions. However, there is also another important feature of the ligand shell of NPs, namely, the creation of a local environment differing from the bulk of the solvent in which the NPs are dispersed. It is known that charged ligand shells can attract or repel ions and change the effective charge of a NP through Debye-Hückel screening. Positively charged ions, such as H+ (or H3O+) are attracted to negatively charged surfaces, whereas negatively charged ions, such as Cl- are repelled. The distribution of the ions around charged NP surfaces is a radial function of distance from the center of the NP, which is governed by a balance of electrostatic forces and entropy of ions and ligands. As a result, the ion concentration at the NP surface is different from its bulk equilibrium concentration, i.e., the charged ligand shell around the NPs has formed a distinct local environment. This not only applies to charged ligand shells but also follows a more general principle of induced condensation and depletion. Polar/apolar ligand shells, for example, result in a locally increased concentration of polar/apolar molecules. Similar effects can be seen for biocatalysts like enzymes immobilized in nanoporous host structures, which provide a special environment due to their surface chemistry and geometrical nanoconfinement. The formation of a local environment close to the ligand shell of NPs has profound implications for NP sensing applications. As a result, analyte concentrations close to the ligand shell, which are the ones that are measured, may be very different from the analyte concentrations in bulk. Based on previous work describing this effect, it will be discussed herein how such local environments, created by the choice of used ligands, may allow for tailoring the NPs' sensing properties. In general, the ligand shell around NPs can be attractive/repulsive for molecules with distinct properties and thus forms an environment that can modulate the specific response. Such local environments can also be optimized to modulate chemical reactions close to the NP surface (for example, by size filtering within pores) or to attract specific low abundance proteins. The importance hereby is that this is based on interaction with low selectivity between the ligands and the target molecules.

3.
ACS Appl Mater Interfaces ; 15(4): 5687-5700, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669131

RESUMEN

A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.

4.
ACS Appl Mater Interfaces ; 15(4): 5191-5197, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652301

RESUMEN

Nitrogen oxides are adverse poisonous gases present in the atmosphere and having detrimental effects on the human health and environment. In this work, we propose a new type of mesoporous materials capable of capturing nitrogen monoxide (NO) from air. The designed material combines the robust Santa Barbara Amorphous-15 silica scaffold and ultrastable Blatter-type radicals acting as NO traps. Using in situ electron paramagnetic resonance spectroscopy, we demonstrate that NO capture from air is selective and reversible at practical conditions, thus making Blatter radical-decorated silica highly promising for environmental applications.

5.
ACS Nano ; 16(8): 11692-11707, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35760395

RESUMEN

Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.

6.
ACS Omega ; 6(37): 24062-24069, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34568684

RESUMEN

For the successful use of lithium-ion batteries in automotive applications, reliable availability of high storage capacity and very short recharging times are essential. In order to develop the perfect battery for a certain application, structure-property relationships of each active material must be fully understood. LiFePO4 is of great interest due to its fast-charging capability and high stability regarding its thermal resistance and chemical reactivity. The anisotropic lithium-ion diffusion through the LiFePO4 crystal structure indicates a strong dependence of the electrochemical performance of a nanostructured active material on particle morphology. In this paper, the relationship of the particle morphology and fast-charging capability of LiFePO4/C core/shell nanoparticles in half-cells was studied. For this purpose, a new multistep synthesis strategy was developed. It involves the combination of a solvothermal synthesis followed by an in situ polymer coating and thermal calcination step. Monodisperse rodlike LiFePO4 nanoparticles with comparable elongation along the b-axis (30-50 nm) and a varying aspect ratio c/a (2.4-6.9) were obtained. A strong correlation of the fast-charging capability with the aspect ratio c/a was observed. When using LiFePO4 nanoparticles with the smallest aspect ratio c/a, the best electrochemical performance was received regarding the specific capacity at high C-rates and the cycling stability. A reduction of the aspect ratio c/a by 30% (3.6 to 2.4) was found to enhance the charge capacity at 10 C up to an order of magnitude (7.4-73 mA h·g-1).

7.
Inorg Chem ; 60(17): 13000-13010, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34415750

RESUMEN

The infiltration of palladium and platinum nanoparticles (NPs) into the mesoporous metal-organic framework (MOF) CYCU-3 through chemical vapor infiltration (CVI) and incipient wetness infiltration (IWI) processes was systematically explored as a means to design novel NP@MOF composite materials for potential hydrogen storage applications. We employed a traditional CVI process and a new ″green″ IWI process using methanol for precursor infiltration and reduction under mild conditions. Transmission electron microscopy-based direct imaging techniques combined with synchrotron-based powder diffraction (SPD), energy-dispersive X-ray spectroscopy, and physisorption analysis reveal that the resulting NP@MOF composites combine key NP and MOF properties. Room temperature hydrogen adsorption capacities of 0.95 and 0.20 mmol/g at 1 bar and 2.9 and 1.8 mmol/g at 100 bar are found for CVI and IWI samples, respectively. Hydrogen spillover and/or physisorption are proposed as the dominating adsorption mechanisms depending on the NP infiltration method. Mechanistic insights were obtained through the crystallographic means using SPD-based difference envelope density analysis, providing previously underexplored details on NP@MOF preparations. Consequently, important host-guest correlations influencing the global hydrogen adsorption properties are discussed, and they demonstrate that employing MOFs as platforms for NPs is an alternative approach to the development of versatile materials for improving current hydrogen storage technologies.

8.
J Chem Phys ; 154(9): 094505, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685146

RESUMEN

We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5 nm-4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.

9.
Angew Chem Int Ed Engl ; 60(16): 8683-8688, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33491265

RESUMEN

Quantum computing and quantum information processing (QC/QIP) crucially depend on the availability of suitable quantum bits (qubits) and methods of their manipulation. Most qubit candidates known to date are not applicable at ambient conditions. Herein, we propose radical-grafted mesoporous silica as a versatile and prospective nanoplatform for spin-based QC/QIP. Extremely stable Blatter-type organic radicals are used, whose electron spin decoherence time is profoundly long even at room temperature (up to Tm ≈2.3 µs), thus allowing efficient spin manipulation by microwave pulses. The mesoporous structure of such composites is nuclear-spin free and provides additional opportunities of embedding guest molecules into the channels. Robustness and tunability of these materials promotes them as highly promising nanoplatforms for future QC/QIP developments.

10.
Sci Rep ; 10(1): 9543, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533033

RESUMEN

Wood porosity is of great interest for basic research and applications. One aspect is the cell wall porosity at total dry state. When water is absorbed by wood, the uptake of water within the cell wall leads to a dimension change of the material. A hypothesis for possible structures that hold the water is induced cell wall porosity. Nitrogen and krypton physisorption as well as high pressure hydrogen sorption and thermoporosimetry were applied to softwood and hardwood (pine and beech) in dry and wet state for determining surface area and porosity. Physisorption is not able to detect pores or surface area within the cell wall. Krypton physisorption shows surface area up 5 times lower than nitrogen with higher accuracy. With high pressure sorption no inaccessible pore volumes were seen at higher pressures. Thermoporosimetry was not able to detect mesopores within the hygroscopic water sorption region. Physisorption has to be handled carefully regarding the differences between adsorptives. The absence of water-induced mesopores within the hygroscopic region raise doubts on existing water sorption theories that assume these pore dimensions. When using the term "cell wall porosity", it is important to distinguish between pores on the cell wall surface and pores that exist because of biological structure, as there are no water-induced mesopores present. The finding offers the possibility to renew wood-water-sorption theories because based on the presented results transport of water in the cell wall must be realized by structures lower than two 2 nm. Nanoporous structures in wood at wet state should be investigated more intensively in future.

11.
J Phys Chem Lett ; 11(14): 5674-5679, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32598155

RESUMEN

Herein, we present a detailed investigation of the electrochemically triggered formation and dissolution processes of α- and ß-sulfur crystals on a monolithic carbon cathode using operando high-resolution synchrotron radiography (438 nm/pixel). The combination of visual monitoring with the electrical current response during cyclic voltammetry provides valuable insights into the sulfur formation and dissolution mechanism. Our observations show that the crystal growth process is mainly dictated by a rapid equilibrium between long-chain polysulfides on one side and solid sulfur/short-chain polysulfides on the other side, which is consistent with previous studies in this field. The high temporal and spatial resolution of synchrotron imaging enables the observation of different regimes during the sulfur formation and dissolution process. The appearance of short-chain polysulfides after the first anodic CV peak initiates a rapid dissolution process of α-sulfur crystals on the cathode. The increase in the long-chain lithium polysulfide concentration at the cathode surface during charge results in an increased crystal growth rate, which in turn produces imperfections in α- and ß-sulfur crystals. There are strong indications that these defects are fluid inclusions, which may trap dissolved polysulfides and therefore reduce the electrochemical cell capacity.

12.
Chemistry ; 26(49): 11220-11230, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196769

RESUMEN

Herein, it is reported how pseudomorphic transformation of divinylbenzene (DVB)-bridged organosilica@controlled pore glasses (CPG) offers the possibility to generate hierarchically porous organosilica/silica hybrid materials. CPG is utilized to provide granular shape/size and macroporosity and the macropores of the CPG is impregnated with organosilica phase, forming hybrid system. By subsequent pseudomorphic transformation, an ordered mesopore phase is generated while maintaining the granular shape and macroporosity of the CPG. Surface areas and mesopore sizes in the hierarchical structure are tunable by the choice of the surfactant and transformation time. Two-dimensional magic angle spinning (MAS) NMR spectroscopy demonstrated that micellar-templating affects both organosilica and silica phases and pseudomorphic transformation induces phase transition. A double-layer structure of separate organosilica and silica layers is established for the impregnated material, while a single monophase consisting of randomly distributed T and Q silicon species at the molecular level is identified for the pseudomorphic transformed materials.

13.
J Mater Chem B ; 8(4): 776-786, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31898715

RESUMEN

In this article, a new type of core-shell nanoparticle is introduced. In contrast to most reported core-shell systems, the particles presented here consist of a porous core as well as a porous shell using only non-metal materials. The core-shell nanoparticles were successfully synthesized using nanoporous silica nanoparticles (NPSNPs) as the starting material, which were coated with nanoporous phenylene-bridged organosilica, resulting in a total particle diameter of about 80 nm. The combination of a hydrophilic nanoporous silica core and a more hydrophobic nanoporous organosilica shell provides regions of different chemical character and slightly different pore sizes within one particle. These different properties combined in one particle enable the selective adsorption of guest molecules at different parts of the particle depending on the molecular charge and polarity. On the other hand, the core-shell make-up of the particles provides a sequential release of guest molecules adsorbed at different parts of the nanoparticles. As a proof of concept, loading and release experiments with dyes were performed using non polar fluorescein and polar and charged methylene blue as model guest molecules. Non polar fluorescein is mostly adsorbed on the hydrophobic organosilica shell and therefore quickly released whereas the polar methylene blue, accumulated in the hydrophilic silica core, is only released subsequently. This occurs in small doses for an extended time corresponding to a sustained release over at least one year, controlled by the organosilica shell which acts as a diffusion barrier. An initial experiment with two drugs - non polar ibuprofen and polar and charged procaine hydrochloride - has been carried out as well and shows that the core-shell nanoparticles presented here can also be used for the sequential release of more relevant combinations of molecules.


Asunto(s)
Ibuprofeno/química , Nanopartículas/química , Compuestos de Organosilicio/química , Procaína/química , Dióxido de Silicio/química , Liberación de Fármacos , Fluoresceína/química , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Azul de Metileno/química , Estructura Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
14.
Dalton Trans ; 48(40): 15127-15135, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31560355

RESUMEN

Four metal-organic frameworks employing the m-terphenyl diisophthalate linker molecule with 2' substitution by P(v)-based functional groups of the central aryl have been synthesised. The dense packing of POMe2/PSMe2 functional groups within UHM-60/UHM-61 (UHM: University of Hamburg Materials) with an underlying net of ucp topology was overcome by increasing the sterical demand of phosphorus substituents. Replacement of the PEMe2 (E = O, S) functional groups by POEt2 or POPh2 gave UHM-62 and UHM-63, respectively, where valid deconstructions of the underlying topology to types 3,3,4,4T199, tim, and tst were found. The potential influence of the now-accessible phosphoryl functional group towards CO2 and CH4 adsorption as well as the selectivity towards CO2/CH4 separation was studied. Based on a comprehensive survey of literature-known Cu(ii)-based MOFs with m-terphenyl-based linker molecules, we propose the deconstruction of inter-isophthalate plane angles to angular components of twist and fold allowing for the sophisticated classification of topologies that can be realised in Cu(ii)-based MOFs using the m-terphenyl tetracarboxylate linker molecule.

15.
Inorg Chem ; 58(13): 8471-8479, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31184867

RESUMEN

Nanosized structural defects in metal-organic frameworks (MOFs) attract growing attention and often remarkably enhance functional properties of these materials for various applications. In this work, a series of MOFs [Cu2(TPTA)1- x(BDPBTR) x] (H4TPTA, [1,1':3',1″-terphenyl]-3,3'',5,5''-tetracarboxylic acid; H4BDPBTR, 1,3-bis(3,5-dicarboxyphenyl)-1,2,4-benzotriazin-4-yl radical)) with a new stable radical linker doped into the structure has been synthesized and investigated using Electron Paramagnetic Resonance (EPR). Mixed linkers H4TPTA and H4BDPBTR were used to bridge copper(II) paddle-wheel units into a porous framework, where H4BDPBTR is the close structural analogue of H4TPTA. MOFs with various x = 0-0.4 were investigated. EPR studies indicated that the radical linker binds to the copper(II) units differently compared to diamagnetic linker, resulting in the formation of nanosized structural defects. Moreover, remarkable kinetic phenomena were observed upon cooling of this MOF, where slow structural rearrangements and concomitant changes of magnetic interactions were induced. Thus, our findings demonstrate that doping of structurally mimicking radical linkers into MOFs represents an efficient approach for designing target nanosized defects and introducing new magnetostructural functionalities for a variety of applications.

16.
ACS Appl Mater Interfaces ; 11(27): 24423-24434, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31188560

RESUMEN

Thermal and dynamic properties of ionic liquid (IL)-based electrolytic solution (Li+TFSI- in Pyr13+TFSI-; 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide = Pyr13+TFSI-) confined in nanoporous polymer hosts were investigated with respect to the pore size/porosity and the surface chemistry of the polymer host. As host material, mesoporous resorcinol-formaldehyde (RF) polymer monoliths with three-dimensionally connected pore structure were prepared, with precise control of the pore size ranging from ca. 7 to 60 nm. Thermal analysis of RF polymer-ionic liquid composites showed stability up to almost 400 °C and a melting point depression proportional to the inverse of the pore diameter. Good ionic conductivity comparable to that of a commercial separator is obtained, which is dependent on the porosity (i.e., pore volume) of the confining host material (i.e., the number of charge carriers available in the system). Further pulsed field gradient (PFG) NMR experiments revealed that the diffusion coefficient of Pyr13+ cation becomes smaller than that of TFSI- anion inside RF pores, which is contradictory to the bulk IL system. This change in the ionic motion is due to electrostatic attraction between the pore walls and Pyr13+ cations, resulting in a layer structure composed of a Pyr13+ cation-rich layer adsorbed at the pore wall surface and a TFSI- anion-enriched bulklike layer at the pore center. Our study suggests that transport characteristics of the ions of interest can be controlled by optimizing the surface chemistry of the host framework and their motion can be separately monitored by PFG NMR spectroscopy.

17.
Front Chem ; 7: 230, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31041305

RESUMEN

Nitrogen sorption and melting and freezing of water in a small pore size mesoporous glass with irregular pore structure is studied. The analysis of the experimentally obtained data is performed using the recently developed serially connected pore model (SCPM). The model intrinsically incorporates structural disorder by introducing coupling between nucleation and phase growth mechanisms in geometrically disordered mesopore spaces. It is shown that, in contrast to the independent pore models prevailing in the literature, SCPM self-consistently describes not only boundary transitions, but also the entire family of the scanning transitions. The scanning behavior is shown to be very sensitive to microscopic details of the fluid phase distribution within the porous materials, hence can be used to check the validity of the thermodynamic models and to improve the structural analysis. We show excellent quantitative agreement between the structural information evaluated from the cryoporometry and gas sorption data using SCPM.

18.
Phys Chem Chem Phys ; 21(6): 3122-3133, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30675602

RESUMEN

The electric double layer formation of supercapacitors is governed by ion electrosorption at the electrode surface. Large surface areas are beneficial for the energy storage process, typically achieved by carbon electrode materials. It is a matter of debate whether pores provide the same contribution to the capacitance regardless of the size, or if subnanometer pores lead to an anomalous increase of capacitance. In our work, we developed a new model for normalized capacitance depending on pore sizes, using a combination of a sandwich type capacitor for micropores and double-cylinder capacitor model for larger pores. Modification factors for each capacitance value were calculated using the nonlinear generalized reduced gradient method to obtain a modified electric sandwich double-cylinder capacitor (ESDCC) model. The model was validated by comparing the measured capacitance values of a set of prepared activated carbons in organic electrolytes with simulated values according to the modified ESDCC model, using combined physisorption data of carbon dioxide and nitrogen. We concluded a non-constant capacitive contribution, with pores having the size of bare cations contributing to the capacitance to a larger extent and mesopores with the size of three solvated ions providing an unusual low contribution to the overall capacitance.

19.
Angew Chem Int Ed Engl ; 57(51): 16683-16687, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30334321

RESUMEN

We demonstrate the synthesis of the first anionic aluminum metal-organic framework (MOFs) constructed from tetrahedral AlO4 sites. Al-Td-MOF-1 was obtained in a simple two-step synthesis by condensation of 1,4-dihydroxybenzene and lithium aluminum hydride into an amorphous aluminate framework before applying a solvothermal treatment under basic conditions to obtain the crystalline Al-Td-MOF-1 with a chemical composition of Li[Al(C6 H4 O2 )2 ]. The overall Al-Td-MOF-1 structure consists of one-dimensional chains of alternating edge-sharing AlO4 and LiO4 tetrahedral sites describing unidirectional pore channels with a square window aperture of ≈5×5 Å2 , best described topologically as a uninodal 6-coordinated snp rod net. Al-Td-MOF-1 features the highest Li+ loading reported to date for a MOF (2.50 wt %) and proved to be an effective single-ion solid electrolyte. An ionic conductivity of 5.7×10-5  S cm-1 was measured for Al-Td-MOF-1 and the beneficial contribution of crystallinity was evidenced by an 8-fold increase in conductivity between the disordered and crystalline material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...