Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38709782

RESUMEN

Distyly is an iconic floral polymorphism governed by a supergene, which promotes efficient pollen transfer and outcrossing through reciprocal differences in the position of sexual organs in flowers, often coupled with heteromorphic self-incompatibility. Distyly has evolved convergently in multiple flowering plant lineages, but has also broken down repeatedly, often resulting in homostylous, self-compatible populations with elevated rates of self-fertilization. Here, we aimed to study the genetic causes and genomic consequences of the shift to homostyly in Linum trigynum, which is closely related to distylous Linum tenue. Building on a high-quality genome assembly, we show that L. trigynum harbors a genomic region homologous to the dominant haplotype of the distyly supergene conferring long stamens and short styles in L. tenue, suggesting that loss of distyly first occurred in a short-styled individual. In contrast to homostylous Primula and Fagopyrum, L. trigynum harbors no fixed loss-of-function mutations in coding sequences of S-linked distyly candidate genes. Instead, floral gene expression analyses and controlled crosses suggest that mutations downregulating the S-linked LtWDR-44 candidate gene for male self-incompatibility and/or anther height could underlie homostyly and self-compatibility in L. trigynum. Population genomic analyses of 224 whole-genome sequences further demonstrate that L. trigynum is highly self-fertilizing, exhibits significantly lower genetic diversity genome-wide, and is experiencing relaxed purifying selection and less frequent positive selection on nonsynonymous mutations relative to L. tenue. Our analyses shed light on the loss of distyly in L. trigynum, and advance our understanding of a common evolutionary transition in flowering plants.


Asunto(s)
Flores , Genoma de Planta , Flores/genética
2.
Curr Biol ; 32(20): 4360-4371.e6, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36087578

RESUMEN

Supergenes govern multi-trait-balanced polymorphisms in a wide range of systems; however, our understanding of their origins and evolution remains incomplete. The reciprocal placement of stigmas and anthers in pin and thrum floral morphs of distylous species constitutes an iconic example of a balanced polymorphism governed by a supergene, the distyly S-locus. Recent studies have shown that the Primula and Turnera distyly supergenes are both hemizygous in thrums, but it remains unknown whether hemizygosity is pervasive among distyly S-loci. As hemizygosity has major consequences for supergene evolution and loss, clarifying whether this genetic architecture is shared among distylous species is critical. Here, we have characterized the genetic architecture and evolution of the distyly supergene in Linum by generating a chromosome-level genome assembly of Linum tenue, followed by the identification of the S-locus using population genomic data. We show that hemizygosity and thrum-specific expression of S-linked genes, including a pistil-expressed candidate gene for style length, are major features of the Linum S-locus. Structural variation is likely instrumental for recombination suppression, and although the non-recombining dominant haplotype has accumulated transposable elements, S-linked genes are not under relaxed purifying selection. Our findings reveal remarkable convergence in the genetic architecture and evolution of independently derived distyly supergenes, provide a counterexample to classic inversion-based supergenes, and shed new light on the origin and maintenance of an iconic floral polymorphism.


Asunto(s)
Lino , Lino/genética , Elementos Transponibles de ADN , Flores/genética , Genómica , Sitios Genéticos , Evolución Molecular
3.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34878144

RESUMEN

Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.


Asunto(s)
Arabis , Genómica , Polen/genética , Autofecundación , Selección Sexual
4.
F1000Res ; 11: 126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37745626

RESUMEN

A sound analysis of DNA sequencing data is important to extract meaningful information and infer quantities of interest. Sequencing and mapping errors coupled with low and variable coverage hamper the identification of genotypes and variants and the estimation of population genetic parameters. Methods and implementations to estimate population genetic parameters from sequencing data available nowadays either are suitable for the analysis of genomes from model organisms only, require moderate sequencing coverage, or are not easily adaptable to specific applications. To address these issues, we introduce ngsJulia, a collection of templates and functions in Julia language to process short-read sequencing data for population genetic analysis. We further describe two implementations, ngsPool and ngsPloidy, for the analysis of pooled sequencing data and polyploid genomes, respectively. Through simulations, we illustrate the performance of estimating various population genetic parameters using these implementations, using both established and novel statistical methods. These results inform on optimal experimental design and demonstrate the applicability of methods in ngsJulia to estimate parameters of interest even from low coverage sequencing data. ngsJulia provide users with a flexible and efficient framework for ad hoc analysis of sequencing data.ngsJulia is available from: https://github.com/mfumagalli/ngsJulia.


Asunto(s)
Genética de Población , Genoma , Genotipo , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
5.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001609

RESUMEN

Parallel adaptation provides valuable insight into the predictability of evolutionary change through replicated natural experiments. A steadily increasing number of studies have demonstrated genomic parallelism, yet the magnitude of this parallelism varies depending on whether populations, species, or genera are compared. This led us to hypothesize that the magnitude of genomic parallelism scales with genetic divergence between lineages, but whether this is the case and the underlying evolutionary processes remain unknown. Here, we resequenced seven parallel lineages of two Arabidopsis species, which repeatedly adapted to challenging alpine environments. By combining genome-wide divergence scans with model-based approaches, we detected a suite of 151 genes that show parallel signatures of positive selection associated with alpine colonization, involved in response to cold, high radiation, short season, herbivores, and pathogens. We complemented these parallel candidates with published gene lists from five additional alpine Brassicaceae and tested our hypothesis on a broad scale spanning ∼0.02 to 18 My of divergence. Indeed, we found quantitatively variable genomic parallelism whose extent significantly decreased with increasing divergence between the compared lineages. We further modeled parallel evolution over the Arabidopsis candidate genes and showed that a decreasing probability of repeated selection on the same standing or introgressed alleles drives the observed pattern of divergence-dependent parallelism. We therefore conclude that genetic divergence between populations, species, and genera, affecting the pool of shared variants, is an important factor in the predictability of genome evolution.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Evolución Biológica , Variación Genética , Genoma de Planta , Proteínas de Plantas/genética , Animales , Arabidopsis/clasificación , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Frío , Ontología de Genes , Flujo Genético , Introgresión Genética , Herbivoria/fisiología , Modelos Genéticos , Anotación de Secuencia Molecular , Proteínas de Plantas/metabolismo , Radiación Ionizante , Estrés Fisiológico
6.
Heredity (Edinb) ; 127(1): 124-134, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33875831

RESUMEN

Polyploidy, or whole-genome duplication, is a common speciation mechanism in plants. An important barrier to polyploid establishment is a lack of compatible mates. Because self-compatibility alleviates this problem, it has long been hypothesized that there should be an association between polyploidy and self-compatibility (SC), but empirical support for this prediction is mixed. Here, we investigate whether the molecular makeup of the Brassicaceae self-incompatibility (SI) system, and specifically dominance relationships among S-haplotypes mediated by small RNAs, could facilitate loss of SI in allopolyploid crucifers. We focus on the allotetraploid species Capsella bursa-pastoris, which formed ~300 kya by hybridization and whole-genome duplication involving progenitors from the lineages of Capsella orientalis and Capsella grandiflora. We conduct targeted long-read sequencing to assemble and analyze eight full-length S-locus haplotypes, representing both homeologous subgenomes of C. bursa-pastoris. We further analyze small RNA (sRNA) sequencing data from flower buds to identify candidate dominance modifiers. We find that C. orientalis-derived S-haplotypes of C. bursa-pastoris harbor truncated versions of the male SI specificity gene SCR and express a conserved sRNA-based candidate dominance modifier with a target in the C. grandiflora-derived S-haplotype. These results suggest that pollen-level dominance may have facilitated loss of SI in C. bursa-pastoris. Finally, we demonstrate that spontaneous somatic tetraploidization after a wide cross between C. orientalis and C. grandiflora can result in production of self-compatible tetraploid offspring. We discuss the implications of this finding on the mode of formation of this widespread weed.


Asunto(s)
Brassicaceae , Capsella , Brassicaceae/genética , Capsella/genética , Diploidia , Hibridación Genética , Poliploidía
7.
Mol Ecol Resour ; 21(3): 661-676, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33058468

RESUMEN

The Arctic is one of the most extreme terrestrial environments on the planet. Here, we present the first chromosome-scale genome assembly of a plant adapted to the high Arctic, Draba nivalis (Brassicaceae), an attractive model species for studying plant adaptation to the stresses imposed by this harsh environment. We used an iterative scaffolding strategy with data from short-reads, single-molecule long reads, proximity ligation data, and a genetic map to produce a 302 Mb assembly that is highly contiguous with 91.6% assembled into eight chromosomes (the base chromosome number). To identify candidate genes and gene families that may have facilitated adaptation to Arctic environmental stresses, we performed comparative genomic analyses with nine non-Arctic Brassicaceae species. We show that the D. nivalis genome contains expanded suites of genes associated with drought and cold stress (e.g., related to the maintenance of oxidation-reduction homeostasis, meiosis, and signaling pathways). The expansions of gene families associated with these functions appear to be driven in part by the activity of transposable elements. Tests of positive selection identify suites of candidate genes associated with meiosis and photoperiodism, as well as cold, drought, and oxidative stress responses. Our results reveal a multifaceted landscape of stress adaptation in the D. nivalis genome, offering avenues for the continued development of this species as an Arctic model plant.


Asunto(s)
Adaptación Fisiológica , Brassicaceae , Genoma de Planta , Regiones Árticas , Brassicaceae/genética , Genómica
8.
Plant Commun ; 1(6): 100111, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33367266

RESUMEN

Demography determines the strength of genetic drift, which generally reduces genetic variation and the efficacy of selection. Here, we disentangled the importance of demographic processes at a local scale (census size and mating system) and at a species-range scale (old split between population clusters, recolonization after the last glaciation cycle, and admixture) in determining within-population genomic diversity and genomic signatures of positive selection. Analyses were based on re-sequence data from 52 populations of North American Arabidopsis lyrata collected across its entire distribution. The mating system and range dynamics since the last glaciation cycle explained around 60% of the variation in genomic diversity among populations and 52% of the variation in the signature of positive selection. Diversity was lowest in selfing compared with outcrossing populations and in areas further away from glacial refugia. In parallel, reduced positive selection was found in selfing populations and in populations with a longer route of postglacial range expansion. The signature of positive selection was also reduced in populations without admixture. We conclude that recent range expansion can have a profound influence on diversity in coding and non-coding DNA, similar in magnitude to the shift toward selfing. Distribution limits may in fact be caused by reduced effective population size and compromised positive selection in recently colonized parts of the range.


Asunto(s)
Arabidopsis/genética , Variación Genética , Flujo Genético , Ontario , Dinámica Poblacional , Refugio de Fauna , Estados Unidos
9.
New Phytol ; 224(1): 505-517, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31254395

RESUMEN

A crucial step in the transition from outcrossing to self-fertilization is the loss of genetic self-incompatibility (SI). In the Brassicaceae, SI involves the interaction of female and male specificity components, encoded by the genes SRK and SCR at the self-incompatibility locus (S-locus). Theory predicts that S-linked mutations, and especially dominant mutations in SCR, are likely to contribute to loss of SI. However, few studies have investigated the contribution of dominant mutations to loss of SI in wild plant species. Here, we investigate the genetic basis of loss of SI in the self-fertilizing crucifer species Capsella orientalis, by combining genetic mapping, long-read sequencing of complete S-haplotypes, gene expression analyses and controlled crosses. We show that loss of SI in C. orientalis occurred < 2.6 Mya and maps as a dominant trait to the S-locus. We identify a fixed frameshift deletion in the male specificity gene SCR and confirm loss of male SI specificity. We further identify an S-linked small RNA that is predicted to cause dominance of self-compatibility. Our results agree with predictions on the contribution of dominant S-linked mutations to loss of SI, and thus provide new insights into the molecular basis of mating system transitions.


Asunto(s)
Capsella/genética , Capsella/fisiología , Secuencia de Bases , Cruzamientos Genéticos , Mutación del Sistema de Lectura/genética , Regulación de la Expresión Génica de las Plantas , Genes Dominantes , Sitios Genéticos , Haplotipos/genética , Filogenia , Carácter Cuantitativo Heredable , ARN de Planta/genética , ARN de Planta/metabolismo , Reproducción/genética , Autoincompatibilidad en las Plantas con Flores/genética , Factores de Tiempo
10.
Mol Biol Evol ; 35(4): 781-791, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346601

RESUMEN

Why species have geographically restricted distributions is an unresolved question in ecology and evolutionary biology. Here, we test a new explanation that mutation accumulation due to small population size or a history of range expansion can contribute to restricting distributions by reducing population growth rate at the edge. We examined genomic diversity and mutational load across the entire geographic range of the North American plant Arabidopsis lyrata, including old, isolated populations predominantly at the southern edge and regions of postglacial range expansion at the northern and southern edges. Genomic diversity in intergenic regions declined toward distribution edges and signatures of mutational load in exon regions increased. Genomic signatures of mutational load were highly linked to phenotypically expressed load, measured as reduced performance of individual plants and lower estimated rate of population growth. The geographic pattern of load and the connection between load and population growth demonstrate that mutation accumulation reduces fitness at the edge and helps restrict species' distributions.


Asunto(s)
Arabidopsis/genética , Variación Genética , Acumulación de Mutaciones , Región de los Apalaches , Aptitud Genética , Genoma de Planta , Great Lakes Region , Fenotipo , Filogeografía
11.
PLoS One ; 10(10): e0140462, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26461136

RESUMEN

Sequencing pooled DNA of multiple individuals from a population instead of sequencing individuals separately has become popular due to its cost-effectiveness and simple wet-lab protocol, although some criticism of this approach remains. Here we validated a protocol for pooled whole-genome re-sequencing (Pool-seq) of Arabidopsis lyrata libraries prepared with low amounts of DNA (1.6 ng per individual). The validation was based on comparing single nucleotide polymorphism (SNP) frequencies obtained by pooling with those obtained by individual-based Genotyping By Sequencing (GBS). Furthermore, we investigated the effect of sample number, sequencing depth per individual and variant caller on population SNP frequency estimates. For Pool-seq data, we compared frequency estimates from two SNP callers, VarScan and Snape; the former employs a frequentist SNP calling approach while the latter uses a Bayesian approach. Results revealed concordance correlation coefficients well above 0.8, confirming that Pool-seq is a valid method for acquiring population-level SNP frequency data. Higher accuracy was achieved by pooling more samples (25 compared to 14) and working with higher sequencing depth (4.1× per individual compared to 1.4× per individual), which increased the concordance correlation coefficient to 0.955. The Bayesian-based SNP caller produced somewhat higher concordance correlation coefficients, particularly at low sequencing depth. We recommend pooling at least 25 individuals combined with sequencing at a depth of 100× to produce satisfactory frequency estimates for common SNPs (minor allele frequency above 0.05).


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Análisis de Secuencia de ADN/métodos , Frecuencia de los Genes/genética , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , Estadística como Asunto
12.
Mol Biol Evol ; 27(8): 1945-54, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20237223

RESUMEN

The CPB2 gene encodes thrombin-activatable fibrinolysis inhibitor (TAFI), a hepatically secreted zymogen acting as a molecular link among coagulation, fibrinolysis, and inflammation. Variants in CPB2 have been associated with several human conditions. We resequenced and analyzed the two regions carrying previously known nonsynonimous single-nucleotide polymorphisms (Ala147Thr and Ile325Thr) and variants affecting transcript stability. Our data indicate that whereas the gene portion extending from exon 9 to the 3' untranslated region fits a model of neutral evolution, variants in the region encompassing exons 6-7 have been maintained by balancing selection. Indeed, we verified that the region displays high nucleotide diversity, many intermediate frequency variants, and an excess of polymorphism compared with interspecific divergence. Consistently, haplotype analysis indicated the presence of two major haplotype clades separated by deep branches. Transcript analysis revealed that in both HepG2 cells and human liver samples, CPB2 exon 7 undergoes haplotype-preferential skipping. Therefore, we indicate that balancing selection has been maintaining functional variants that promote alternative exon 7 splicing. Although transcripts lacking exon 7 represent a minority of total CPB2 products, the effect on antifibrinolytic activity might be much greater as the intrinsic instability of TAFI is a major determinant of its antifibrinolytic potential. These data highlight the contribution of population genetics approaches to the analysis of functional genetic variation and may orient further biochemical and genetics studies on the pathophysiologic role of CPB2 gene products.


Asunto(s)
Empalme Alternativo , Carboxipeptidasa B2/genética , Exones , Haplotipos , Polimorfismo Genético , Precursores de Proteínas/genética , Selección Genética , Bases de Datos Genéticas , Variación Genética , Genética de Población , Humanos , Intrones , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA