RESUMEN
Visceral leishmaniasis (VL) poses a serious health threat, particularly when untreated, necessitating accurate diagnosis. While the gold-standard method involves identifying amastigotes in bone marrow aspirate (BMA), this procedure is invasive and occasionally contraindicated. Additionally, when VL is associated with HIV infection the serologies accuracies could be affected. This study aims to evaluate and compare diagnostic methods for VL in patients with and without HIV coinfection. We enrolled prospectively 127 consecutive adult VL patients, 48 (37.8%) of whom had HIV coinfection, in Brazil's Midwestern region, where VL is endemic. Parasitological examination served as the reference standard for accuracy analysis, with index tests including immunofluorescent antibody test (IFAT), immunochromatographic test with rK39 protein (rK39-ICT), and blood polymerase chain reaction (PCR). Specificity assessment involved 430 healthy blood donors from the same endemic area. Ninety-two patients had parasitologically confirmed VL. Among HIV-uninfected patients, rK39-ICT exhibited sensitivity comparable to PCR (93.6%; 95% CI: 83.6-100 vs. 97.8%; 95% CI: 93.6-99.2, respectively) and superior to IFAT (71.1%; 95% CI: 57.9-84.3). However, in HIV-infected patients, rK39-ICT sensitivity was notably lower than PCR (40.0%; 95% CI: 22.5-57.5 vs. 97.4%; 95% CI: 92.5-98.9) and similar to IFAT (67.5%; 95% CI: 52.9-82.0). Combining two serological tests in parallel identified 82.1% of parasitologically confirmed VL cases, with a negative likelihood ratio significantly lower than either test alone. No test achieved a specificity of 90%, and there were no significant differences in specificity observed among the index tests. The positivity rate of parasitological examination in the 127 VL patients was higher in HIV-infected compared to HIV-uninfected patients, 91.3% (95% CI: 83.2-99.4) versus 67.6% (95% CI: 56.9-78.3), respectively. These findings underscore the necessity of accounting for HIV infection when choosing VL diagnostic methods. Although rK39-ICT provides reliable results in HIV-uninfected patients, BMA examination remains crucial for accurate diagnosis in individuals with HIV/AIDS. In cases where bone marrow aspiration is contraindicated, employing IFAT and rK39-ICT in parallel could be considered, as the occurrence of both positive results is uncommon in healthy individuals from endemic areas.
RESUMEN
This study aimed to estimate the prevalence of cryptococcal antigenemia detected by lateral flow assay (LFA) in AIDS patients and its accuracy in the diagnosis of cryptococcosis. Conducted at a university hospital in Brazil from March 2015 to July 2017, it included AIDS patients over 18 years old with a CD4+ count ≤ 200 cells/mm3. Cryptococcal antigen (CrAg) detection using LFA and latex agglutination (LA), along with blood and urine cultures, were performed. The reference standard was the identification of Cryptococcus spp. in clinical specimens through microbiological or histopathological examination. Among 230 patients, the prevalence of CrAg detected by LFA (CrAg LFA) was 13.0%. Factors associated with cryptococcal antigenemia included fever, vomiting, seizures, and a lack of antiretroviral therapy. The sensitivity and specificity of CrAg LFA were 83.9% and 98.0%, respectively. The positive predictive value (PPV) was 86.7%, the negative predictive value (NPV) was 97.5%, and overall accuracy was 96.1%. Cross-reactions were observed in patients with histoplasmosis and paracoccidioidmycosis, but not with aspergillosis or positive rheumatoid factor. The study concludes that the LFA is a useful tool for detecting cryptococcal antigenemia in severely immunocompromised AIDS patients due to its high NPV, specificity, and PPV.
RESUMEN
Most polymeric food packaging materials are non-biodegradable and derived from petroleum, thus recent studies have focused on evaluating alternative biodegradable materials from renewable sources, with polysaccharides and proteins as the main types of employed biopolymers. Therefore, this study aimed to develop biopolymeric films based on sunflower proteins and galactomannans from locust bean gum. The influence of the galactomannan amount (0.10%, 0.30%, 0.50%, and 0.75% w/v) on the physicochemical, thermal, and mechanical properties of cast sunflower protein-based films was studied. Sunflower proteins gave rise to yellowish, shining, and translucid films. With the incorporation of locust bean gum-derived galactomannans, the films became more brown and opaque, although they still maintained some translucency. Galactomannans significantly changed the proteins' secondary structures, giving rise to films with increased tensile resistance and stretchability. Nevertheless, the increase in the galactomannan amount did not have a significant effect on the film's thermal stability. The protein/galactomannan-based films showed values of water vapor and oxygen permeability that were slightly higher than those of the pristine materials. Overall, blending locust bean gum galactomannans with sunflower proteins was revealed to be a promising strategy to develop naturally colored and translucid films with enhanced mechanical resistance while maintaining flexibility, fitting the desired properties for biodegradable food packaging materials.
RESUMEN
Blood count is crucial for assessing bone marrow's cell production and differentiation during infections, gaging disease severity, and monitoring therapeutic responses. The profile of blood count in chronic forms of paracoccidioidomycosis (PCM) has been insufficiently explored. To better understand the changes in hematological cells in different stages of the PCM chronic form, we evaluated the blood count, including immature blood cells in automated equipment, before and during the treatment follow-up of 62 chronic PCM patients. Predominantly male (96.8%) with an average age of 54.3 (standard deviation SD 6.9) years, participants exhibited pre-treatment conditions such as anemia (45.2%), monocytosis (38.7%), and leukocytosis (17.7%), which became less frequent after clinical cure. Anemia was more prevalent in severe cases. Notably, hemoglobin and reticulocyte hemoglobin content increased, while leukocytes, monocytes, neutrophils, immature granulocytes, and platelets decreased. Chronic PCM induced manageable hematological abnormalities, mainly in the red blood series. Monocytosis, indicating monocytes' role in PCM's immune response, was frequent. Post-treatment, especially after achieving clinical cure, significant improvements were observed in various hematological indices, including immature granulocytes and reticulocyte hemoglobin content, underscoring the impact of infection on these parameters.
RESUMEN
Natural polysaccharides are among the renewable sources with great potential for replacing petroleum-derived chemicals as precursors to produce biodegradable films. This study aimed to prepare biopolymeric films using starch extracted from the periderm and cortex of cassava roots (waste from cassava root processing), locust bean galactomannan, and cellulose nanofibers also obtained from cassava waste. The films were prepared by casting, and their physicochemical, mechanical, and biodegradability properties were evaluated. The content of cellulose nanofibers varied from 0.5 to 2.5%. Although the addition of cellulose nanofibers did not alter the mechanical properties of the films, it significantly enhanced the vapor barrier of the films (0.055 g mm/m2 h kPa-2.5% nanofibers) and their respective stabilities in aqueous acidic and alkaline media. All prepared films were biodegradable, with complete degradation occurring within five days. The prepared films were deemed promising alternatives for minimizing environmental impacts caused by the disposal of petroleum-derived materials.
RESUMEN
Most polymeric materials are synthetic and derived from petroleum, hence they accumulate in landfills or the ocean, and recent studies have focused on alternatives to replace them with biodegradable materials from renewable sources. Biodegradable wastes from food and agroindustry, such as spent coffee grounds (SCGs), are annually discarded on a large scale and are rich in organic compounds, such as polysaccharides, that could be used as precursors to produce films. Around 6.5 million tons of SCGs are discarded every year, generating an environmental problem around the world. Therefore, it was the aim of this work to develop films from the SCGs polysaccharide fraction, which is comprised of cellulose, galactomannans and arabinogalactans. Two types of crosslinking were performed: the first forming coordination bonds of calcium ions with polysaccharides; and the second through covalent bonds with 1,4-phenylenediboronic acid (PDBA). The films with Ca2+ ions exhibited a greater barrier to water vapor with a reduction of 44% of water permeability vapor and 26% greater tensile strength than the control film (without crosslinkers). Films crosslinked with PDBA presented 55-81% higher moisture contents, 85-125% greater permeability to water vapor and 67-150% larger elongations at break than the films with Ca2+ ions. Film biodegradability was demonstrated to be affected by the crosslinking density, with the higher the crosslinking density, the longer the time for the film to fully biodegrade. The results are promising and suggest that future research should focus on enhancing the properties of these films to expand the range of possible applications.
RESUMEN
In Brazil, blood donation is regulated by the Brazilian Ministry of Health, and all States follow the same protocol for clinical and laboratory screening. Brazil is an endemic country for Chagas disease (CD), caused by Trypanosoma cruzi, and for leishmaniasis, caused by a species of Leishmania spp. Screening for leishmaniosis is not routinely performed by blood banks. Given the antigenic similarity between T. cruzi and Leishmania spp., cross-reactions in serological tests can occur, and inconclusive results for CD have been found. The objective of this study was to apply molecular techniques, e.g., nPCR, PCR, and qPCR, to clarify cases of blood donation candidates with non-negative serology for CD and to analyze the difference between the melting temperature during real-time PCR using SYBR Green. Thirty-seven cases that showed non-negative results for CD using chemiluminescent microparticle immunoassay (CMIA) tests from blood banks in Campo Grande, MS, and Campinas, SP, were analyzed. In the serum samples, 35 samples were evaluated by ELISA, and 24.3% (9/35) showed positive results for CD. nPCR was able to detect 12 positive results in 35 samples (34.28%). qPCR for T. cruzi was quantifiable in the samples that showed a value ≥0.002 par eq/mL (parasite equivalents per milliliter), and in 35 samples, 11 (31.42%) were positive. Of all evaluated samples using the described tests (CMIA, ELISA, nPCR, and qPCR), 18 (48.6%) were positive for CD. For MCA by qPCR, the melting temperature was 82.06 °C ± 0.46 for T. cruzi and 81.9 °C ± 0.24 for Leishmania infantum. The Mann-Whitney test showed a significant value of p < 0.0001. However, the differentiation between T. cruzi and L. infantum could not be considered due to temperature overlap. For leishmaniasis, of the 35 samples with non-negative serology for CD tested by the indirect fluorescent antibody test (IFAT), only one sample (2.85%) was positive (1:80). The PCR for Leishmania spp. was performed on 36 blood samples from donation candidates, and all were negative. qPCR for L. infantum showed 37 negative results for the 37 analyzed samples. The data presented here show the importance of performing two different tests in CD screening at blood banks. Molecular tests should be used for confirmation, thereby improving the blood donation system.
RESUMEN
BACKGROUND: Meglumine antimoniate (MA) remains the main treatment for cutaneous leishmaniasis (CL). Uncontrolled studies suggest that intralesional MA (IL-MA) may be noninferior and safer than systemic MA (S-MA). METHODS: Multicenter, randomized, controlled, open-label, phase 3 clinical trial to evaluate the efficacy and toxicity of IL-MA in 3 infiltrations at 14-day intervals compared with S-MA (10-20 mg Sb5+/kg/day, 20 days) for CL, with noninferiority margin of 20%. Primary and secondary outcomes were definitive cure at day 180 and epithelialization rate at day 90 of treatment, respectively. A 2-year follow-up was performed to assess relapses and emergence of mucosal lesions. Adverse events (AEs) were monitored according to the Division of AIDS AE grading system. RESULTS: We evaluated 135 patients. The cure rates (95% confidence interval) for IL-MA and S-MA treatment were, respectively, 82.8% (70.5-91.4) and 67.8% (53.3-78.3) per protocol (PP) and 70.6% (58.3-81.0) and 59.7% (47.0-71.5) per intention to treat (ITT). The epithelialization rates of the IL-MA and S-MA treatment were, respectively, 79.3% (66.6-88 + 8) and 71.2% (57.9-82.2) PP and 69.1% (55.2-78.5) and 64.2% (50.0-74.2) ITT. AEs in the IL-MA and S-MA groups were, respectively, clinical, 45.6% and 80.6%; laboratory, 26.5% and 73.1%; and electrocardiogram, 8.8% and 25.4%. Ten participants in the S-MA group and 1 in the IL-MA group were discontinued due to severe or persistent AEs. CONCLUSIONS: IL-MA provides a similar cure rate and results in less toxicity compared with S-MA and may be used as first-line therapy for CL patients. CLINICAL TRIALS REGISTRATION: REBEC: RBR-6mk5n4.
Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Compuestos Organometálicos , Humanos , Antimoniato de Meglumina/uso terapéutico , Antimoniato de Meglumina/efectos adversos , Antiprotozoarios/efectos adversos , Meglumina/efectos adversos , Brasil , Resultado del Tratamiento , Compuestos Organometálicos/efectos adversos , Leishmaniasis Cutánea/tratamiento farmacológicoRESUMEN
Jabuticabas are wild fruits native to Brazil, and their peels, the main residue from jabuticaba processing, contain significant amounts of bioactive compounds, which are mostly phenolics. Conventional methods based on the estimation of total extractable phenolics (TEP-Folin-Ciocalteau) or total monomeric anthocyanins (TMA) have limitations and may not reflect the actual antioxidant potential of these peels. Analytical methods, such as high-performance liquid chromatography (HPLC), are more appropriate for the quantification of specific phenolics, and can be used as a reference for the construction of mathematical models in order to predict the amount of compounds using simple spectroscopic analysis, such as Fourier Transform Infrared Spectroscopy (FTIR). Therefore, the objectives of this study were (i) to evaluate the composition of specific polyphenols in flours prepared from jabuticaba peels and verify their correlation with TEP and TMA results from a previous study, and (ii) to employ FTIR coupled with chemometrics to predict the concentrations of these polyphenols in jabuticaba peel flours (JPFs) using HPLC as a reference method. Cyanidin-3-glucoside (C3G), ellagic acid (EA) and delphinidin-3-glucoside (D3G) were the main polyphenols found in the samples. The C3G contents ranged from 352.33 mg/100 g (S10) to 1008.73 mg/100 g (S22), with a strong correlation to TMA (r = 0.97; p = 0.00) and a moderate correlation to TEP (r = 0.45; p = 0.02). EA contents ranged from 163.65 mg/100 g (S23) to 334.69 mg/100 g (S11), with a moderate to strong correlation to TEP (r = 0.69; p = 0.00). The D3G values ranged from 94.99 mg/100 g (S10) to 203.36 mg/100 g (S5), with strong correlations to TMA (r = 0.91; p = 0.00) and C3G levels (r = 0.92; p = 0.00). The developed partial least squares-PLS models based on FTIR data provided satisfactory predictions of C3G and EA levels, reasonably matching those of HPLC.
RESUMEN
The present work proposes the use of an agro-industrial residue from the sunflower crop as a feedstock to produce a low-cost adsorbent with a chemically modified surface bearing sulfonic groups. This modified low-cost adsorbent can be used for the removal of phenylalanine, and can also be applied in the process of obtaining a source of protein supplementation for patients with phenylketonuria. The functionalization of the adsorbent with sulfonic groups was adapted and presented advantages in terms of execution time, energy expenditure, number of reagents used and adsorbed amino acids. The produced adsorbent presented a surface area of 317.31 m2 g-1 with a predominance of micro- and mesopores, that influenced an approximate 30-fold reduction in adsorption equilibrium time. The optimization results indicated a higher adsorption capacity (39.64 mg g-1) in pH = 4; temperature of 25 °C and adsorbent dosage of 10 g L-1. The FTIR analyzes and the qualitative analysis of the elements present in the samples by EDS confirmed the introduction of sulfonic groups in the MPS500 coal. This work contributed to the understanding behind the adsorption of L-phenylalanine on charcoal surfaces functionalized with sulfonic groups, showing that they can be more selective for the adsorption of phenylalanine in a competitive system.
RESUMEN
Current estimates place the amount of spent coffee grounds annually generated worldwide in the 6 million ton figure, with the sources of spent coffee grounds being classified as domestic (i.e., household), commercial (i.e., coffee houses, cafeterias and restaurants), and industrial (i.e., soluble and instant coffee industries). The majority of the produced spent coffee grounds are currently being inappropriately destined for landfills or to a form of energy recovery (e.g., incineration) as a refuse-derived fuel. The disposal of spent coffee in landfills allows for its anaerobic degradation with consequent generation and emission of aggressive greenhouse gases such as methane and CO2, and energy recovery processes must be considered an end-of-life stage in the lifecycle of spent coffee grounds, as a way of delaying CO2 emissions and of avoiding emissions of toxic organic volatile compounds generated during combustion of this type of waste. Aside from these environmental issues, an aspect that should be considered is the inappropriate disposal of a product (SCG) that presents unique thermo-mechanical properties and textural characteristics and that is rich in a diversity of classes of compounds, such as polysaccharides, proteins, phenolics, lipids and alkaloids, which could be recovered and used in a diversity of applications, including food-related ones. Therefore, researchers worldwide are invested in studying a variety of possible applications for spent coffee grounds and products thereof, including (but not limited to) biofuels, catalysts, cosmetics, composite materials, feed and food ingredients. Hence, the aim of this essay was to present a comprehensive review of the recent literature on the proposals for utilization of spent coffee grounds in food-related applications, with focus on chemical composition of spent coffee, recovery of bioactive compounds, use as food ingredients and as components in the manufacture of composite materials that can be used in food applications, such as packaging.
RESUMEN
The Specialty Coffee Association (SCA) sensory analysis protocol is the methodology that is used to classify specialty coffees. However, because the sensory analysis is sensitive to the taster's training, cognitive psychology, and physiology, among other parameters, the feasibility of instrumental approaches has been recently studied for complementing such analyses. Spectroscopic methods, mainly near infrared (NIR) and mid infrared (FTIR-Fourier Transform Infrared), have been extensively employed for food quality authentication. In view of the aforementioned, we compared NIR and FTIR to distinguish different qualities and sensory characteristics of specialty coffee samples in the present study. Twenty-eight green coffee beans samples were roasted (in duplicate), with roasting conditions following the SCA protocol for sensory analysis. FTIR and NIR were used to analyze the ground and roasted coffee samples, and the data then submitted to statistical analysis to build up PLS models in order to confirm the quality classifications. The PLS models provided good predictability and classification of the samples. The models were able to accurately predict the scores of specialty coffees. In addition, the NIR spectra provided relevant information on chemical bonds that define specialty coffee in association with sensory aspects, such as the cleanliness of the beverage.
RESUMEN
A cross-sectional study was carried out in the Hematology and Hemotherapy Institute of the state of Mato Grosso do Sul (Hemosul) to evaluate the seroprevalence and risk factors of Hepatitis E Virus (HEV) exposure among volunteer blood donors in Central Brazil. Two-hundred fifty samples from the biorepository were tested for anti-HEV IgG and IgM using the Wantai HEV ELISA test. The seroprevalence of HEV exposure was 6.4% (95% CI: 3.9-10.2). Being born in another state of Brazil, mainly in the Southeast and South regions, was associated with a higher risk of HEV exposure (p < 0.001).
Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Donantes de Sangre , Brasil/epidemiología , Estudios Transversales , Anticuerpos Antihepatitis , Hepatitis E/epidemiología , Humanos , Inmunoglobulina M , Estudios Seroepidemiológicos , VoluntariosRESUMEN
Oil-in-water (O/W) emulsions stabilized by cellulose nanocrystals (CNC) and/or sunflower proteins (SFP) were produced, aiming to study the effects of each and the mixture of these stabilizers on the interfacial behavior and physicochemical properties of O/W emulsions. The presence of CNC (non-surface activity compound) did not affect SFP solutions' adsorption kinetics since there were no differences in the interfacial tension curves of SFP and mixtures of stabilizers over time. However, either stabilizer provided alone high resistance against droplet coalescence over time (no evidence of oiling-off and no difference in the mean droplet size values), even systems with less viscoelastic interface (2 % CNC). Although droplet coalescence was prevented by steric hindrance and reduction of interfacial tension between the oil-water phases provided by CNC and SFP, respectively, these emulsions were unstable to the creaming phenomenon. Only the mixture of these stabilizers was able to prevent both destabilization mechanisms, initially by adsorption and anchoring of SFP on the interface, followed by adsorption of CNC in the free interface spaces, and finally by the interaction of non-adsorbed CNC particles in the continuous phase, which led to an increase in system viscosity. Thus, based on the results of interfacial properties and emulsions characteristics, we had a better understanding of stabilization mechanisms of O/W emulsions by a food-grade particle and a plant-derived protein.
Asunto(s)
Helianthus , Nanopartículas , Celulosa/química , Emulsiones/química , Nanopartículas/química , Aceites/químicaRESUMEN
The peel of jabuticaba, a small fruit native to Brazil, has been shown to be a potential source of antioxidants and soluble dietary fibers. In this study, flours prepared from these peels were evaluated as a source of pectin. Different extraction methods were employed: ultrasound (US) extraction followed by low temperature heating (40 °C); in a microwave (MW) without (method 1) or with cellulase (method 2) or hemicellulase (method 3); or in a water bath (method 4). Pectin yields ranged from approximately 18% for methods 1 and 4 up to 22% for enzyme-assisted extractions (methods 2 and 3). Methods that did not employ enzymes resulted in low amounts of methoxyl pectins, as opposed to high amounts of methoxyl pectins obtained after enzyme treatment. Cyanidin-3-O-glucoside (C3G) and ellagic acid were the main phenolic compounds found in jabuticaba peel pectins, with higher C3G levels obtained with enzyme-free extraction (methods 1 and 4). All pectins from jabuticaba peel presented a reddish tone, good emulsifying properties and high swelling capacity. The pectin extracted using US+MW+cellulase (method 2) presented better emulsifying performance (higher values of emulsifying activity and emulsion stability), more effective than commercially available citrus pectin.
RESUMEN
Abstract A cross-sectional study was carried out in the Hematology and Hemotherapy Institute of the state of Mato Grosso do Sul (Hemosul) to evaluate the seroprevalence and risk factors of Hepatitis E Virus (HEV) exposure among volunteer blood donors in Central Brazil. Two-hundred fifty samples from the biorepository were tested for anti-HEV IgG and IgM using the Wantai HEV ELISA test. The seroprevalence of HEV exposure was 6.4% (95% CI: 3.9-10.2). Being born in another state of Brazil, mainly in the Southeast and South regions, was associated with a higher risk of HEV exposure (p < 0.001).
RESUMEN
Coffee husks are a major by-product of coffee production and are currently being underutilized. The aim of this work was to chemically characterize coffee husks to allow for an adequate evaluation of their potential for valorization. Blanched and non-blanched coffee husks were characterized for extractable and non-extractable phenolics, caffeine, trigonelline content, and for their polysaccharide and proximal composition. The total, soluble and insoluble fiber contents were determined, together with the husks' technological properties. Antioxidant activity and bioaccessibility of phenolic compounds of coffee husks were evaluated. Two types of husk were studied: one comprised mostly of outer skin and pulp (CH1); and other comprised mostly of parchment (CH2). Blanching had positive effects on non-extractable phenolics, chlorogenic acid and on the bioaccessibility of phenolics, promoting small reductions in extractable phenolics, protocathecuic acid, caffeine and trigonelline contents. Blanched CH1 presented more appropriate properties than CH2 for potential applications in food. It also presented better antioxidant, hydration, and oil holding properties than those of other agri-food by-products. Tentatively identified polysaccharides included galactomannans, arabinogalactans type II, pectin and cellulose.
RESUMEN
Umbu, a common fruit from the northeastern region of Brazil, contains many bioactive compounds not yet exploited. Thus, this study evaluated the potential of pulps and peels of mature and semi-mature umbu as a source of bioactive compounds. Trigonelline contents ranged from 1.75 to 6.14 mg/100 g, values higher than those of many vegetables described in the literature, such as corn and barley. The contents of extractable and non-extractable phenolic compounds were also higher than those of other vegetables. Bioaccessibility of total extractable phenolics, flavonoids, and tannins was determined (15.67-37.73%, 31.87-39.10% and 18.81-114.27%, respectively). The constituent polysaccharides of the pulp and peel were tentatively chemically characterized as arabinoxylans, arabinogalactans, rhamnoarabinogalactans, xyloglucans, and pectin of the rhamnogalacturonan type. The technological potential of peel flours was evaluated. The maturation advancement showed no significant changes in the technological properties of the flours, except for color and water solubility index. Results indicated excellent prospects for future research on umbu pulps and peels as potential sources of natural bioactive compounds.
RESUMEN
Cloning techniques are used to improve agronomical traits and answer to the demand for fine chocolate. The objective of this study was to predict the concentrations of bioactive amines, phenolic compounds, and the antioxidant potential of dark monoclonal chocolate from nine fine cocoa varieties by FTIR analysis and conventional techniques. Total phenolic compounds, bioactive amines and antioxidant activity varied significantly among chocolates. The antioxidant activity was also affected by the analytical method (DPPH vs. Rancimat). Chemometric models based on FTIR data provided satisfactory predictions of the concentrations of the amines: spermidine (R2 = 0.92; RMSEP = 0.39; RMSEC = 0.21), tryptamine (R2 = 0.92; RMSEP = 0.41; RMSEC = 0.20), cadaverine (R2 = 0.82; RMSEP = 1.58; RMSEC = 0.75) and tyramine (R2 = 0.87; RMSEP = 1.87; RMSEC = 0.68); as well as phenolic compounds and antioxidant activity by Rancimat® (R2 = 0.98; RMSEP = 0.32; RMSEC = 0.21) and DPPH (R2 = 0.97; RMSEP = 4.05; RMSEC = 1.66). The wavenumbers of amines vibrations are among those that most affected antioxidant prediction models, confirming the contribution of amines to the antioxidant activity of chocolates.