Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(31): 41351-41362, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39049692

RESUMEN

Water-soluble polymers with the ability to complex metal ions through complexing ligands have attracted significant interest in diverse domains, such as optical or catalyst applications. In this paper, we successfully synthesized, through a one-pot process combining polymerization-induced self-assembly and reversible addition-fragmentation chain transfer polymerization, aqueous dispersions of terpyridine-decorated poly[poly(ethylene glycol)methyl ether methacrylate]-b-poly(methyl methacrylate) (tpy-PPEGMA-b-PMMA) amphiphilic block copolymers. The in-situ formation of well-defined amphiphilic block copolymers and their self-assembly led to nanosphere latex with the hydrodynamic diameters increasing from 17 to 52 nm and the length of the copolymers increasing from 21,000 to 51,000 g·mol-1. These aqueous dispersed tpy-PPEGMA-b-PMMA nanospheres effectively complex metal ions, such as Cu2+, in a stoichiometric ratio of 2:1. Subsequently, these metal-complexed nanospheres were employed as soft template nanocarriers to control, on the nanometer scale, the dispersion of metal on a nanostructured support. This is exemplified by the synthesis of copper supported on cerium oxide hollow spheres (Cu-CeO2) using Cu2+-tpy-PPEGMA-b-PMMA as template nanocarriers and CeO2 nanoparticles. This novel assembly engineering strategy for the preparation of atomically dispersed metal on a nanostructured support was highlighted through the utilization of Cu-CeO2 hollow spheres as an electrocatalyst for the nitrate reduction reaction (NO3RR) to NH3. These encouraging outcomes emphasize the potential of metal-metal oxide-nanostructured materials to treat contaminated water sources with nitrate while allowing the green production of ammonia.

2.
Chemistry ; 27(9): 3142-3150, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33150981

RESUMEN

Bacterial sialidases (SA) are validated drug targets expressed by common human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, or Clostridium perfringens. Noncovalent inhibitors of bacterial SA capable of reaching the submicromolar level are rarely reported. In this work, multi- and polyvalent compounds are developed, based on the transition-state analogue 2-deoxy-2,3-didehydro-N-acetylneuraminic (DANA). Poly-DANA inhibits the catalytic activity of SA from S. pneumoniae (NanA) and the symbiotic microorganism B. thetaiotaomicron (BtSA) at the picomolar and low nanomolar levels (expressed in moles of molecules and of DANA, respectively). Each DANA grafted to the polymer surpasses the inhibitory potential of the monovalent analogue by more than four orders of magnitude, which represents the highest multivalent effect reported so far for an enzyme inhibition. The synergistic interaction is shown to operate exclusively in the catalytic domain, and not in the flanked carbohydrate-binding module (CBM). These results offer interesting perspectives for the multivalent inhibition of other SA families lacking a CBM, such as viral, parasitic, or human SA.


Asunto(s)
Neuraminidasa/antagonistas & inhibidores , Streptococcus pneumoniae/enzimología , Dominio Catalítico/efectos de los fármacos , Neuraminidasa/metabolismo , Streptococcus pneumoniae/citología , Streptococcus pneumoniae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...