Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(6): 1734-1740, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38323906

RESUMEN

Optical pump-probe techniques allow for an in-depth study of dark excited states. Here, we utilize them to map and gain insights into the excited states involved in the thermally activated delayed fluorescence (TADF) mechanism of a benchmark TADF emitter DMAC-TRZ. The results identify different electronic excited states involved in the key TADF transitions and their nature by combining pump-probe and photoluminescence measurements. The photoinduced absorption signals are highly dependent on polarity, affecting the transition oscillator strength but not their relative energy positions. In methylcyclohexane, a strong and vibronically structured local triplet excited state absorption (3LE → 3LEn) is observed, which is quenched in higher polarity solvents as 3CT becomes the lowest triplet state. Furthermore, ultrafast transient absorption (fsTA) confirms the presence of two stable conformers of DMAC-TRZ: (1) quasi-axial (QA) interconverting within 20 ps into (2) quasi-equatorial (QE) in the excited state. Moreover, fsTA highlights how sensitive excited state couplings are to the environment and the molecular conformation.

2.
J Phys Chem Lett ; 14(11): 2764-2771, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36897796

RESUMEN

The molecular photophysics in the thermally activated delayed fluorescence (TADF) spiro-acridine-anthracenone compound, ACRSA, is dominated by the rigid orthogonal spirocarbon bridging bond between the donor and acceptor. This critically decouples the donor and acceptor units, yielding photophysics, which includes (dual) phosphorescence and the molecular charge transfer (CT) states giving rise to TADF, that are dependent upon the excitation wavelength. The molecular singlet CT state can be directly excited, and we propose that supposed "spiro-conjugation" between acridine and anthracenone is more accurately an example of intramolecular through-space charge transfer. In addition, we show that the lowest local and CT triplet states are highly dependent upon spontaneous polarization of the environment, leading to energy reorganization of the triplet states, with the CT triplet becoming lowest in energy, profoundly affecting phosphorescence and TADF, as evident by a (thermally controlled) competition between reverse intersystem crossing and reverse internal conversion, i.e., dual delayed fluorescence (DF) mechanisms.

3.
Chemistry ; 29(23): e202203800, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36648938

RESUMEN

Most organic room-temperature phosphorescence (RTP) emitters do not show their RTP in solution. Here, we incorporated sulfur-containing thiophene bridges between the donor and acceptor moieties in D3 A-type tristriazolotriazines (TTTs). The thiophene inclusion increased the spin-orbit coupling associated with the radiative T1 →S0 pathway, allowing RTP to be observed in solution for all compounds, likely assisted by protection of the emissive TTT-thiophene core from the environment by the bulky peripheral donors.

4.
ACS Appl Electron Mater ; 4(7): 3486-3494, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910938

RESUMEN

Delayed fluorescence (DF) by triplet-triplet annihilation (TTA) is observed in solutions of a benzoperylene-imidoester mesogen that shows a hexagonal columnar mesophase at room temperature in the neat state. A similar benzoperylene-imide with a slightly smaller HOMO-LUMO gap, that also is hexagonal columnar liquid crystalline at room temperature, does not show DF in solution, and mixtures of the two mesogens show no DF in solution either, because of collisional quenching of the excited triplet states on the imidoester by the imide. In contrast, DF by TTA from the imide but not from the imidoester is observed in condensed films of such mixtures, even though neat films of either single material are not displaying DF. In contrast to the DF from the monomeric imidoester in solution, DF of the imide occurs from dimeric aggregates in the blend films, assisted by the imidoester. Thus, the close contact of intimately stacked molecules of the two different species in the columnar mesophase leads to a unique mesophase-assisted aggregate DF. This constitutes the first observation of DF by TTA from the columnar liquid crystalline state. If the imide is dispersed in films of polybromostyrene, which provides an external heavy-atom effect facilitating triplet formation, DF is also observed. Organic light-emitting diodes (OLEDs) devices incorporating these liquid crystal molecules demonstrated high external quantum efficiency (EQE). On the basis of the literature and to the best of our knowledge, the EQE reported is the highest among nondoped solution-processed OLED devices using a columnar liquid crystal molecule as the emitting layer.

5.
J Phys Chem Lett ; 13(30): 6981-6986, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35881847

RESUMEN

Donor-acceptor (D-A) thermally activated delayed fluorescence (TADF) molecules are exquisitely sensitive to D-A dihedral angle. Although commonly simplified to an average value, these D-A angles nonetheless exist as distributions across the individual molecules embedded in films. The presence of these angle distributions translates to distributions in the rates of reverse intersystem crossing (krISC), observed as time dependent spectral shifts and multiexponential components in the emission decay, which are difficult to directly quantify. Here we apply inverse Laplace transform fitting of delayed fluorescence to directly reveal these distributions. Rather than a single average value, the crucial krISC rate is instead extracted as a density of rates. The modes and widths of these distributions vary with temperature, host environment, and intrinsic D-A torsional rigidity of different TADF molecules. This method gives new insights and deeper understanding of TADF host-guest interactions, as well as verifies future design strategies that target D-A bond rigidity.

6.
ACS Appl Electron Mater ; 2(9): 2868-2881, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32984822

RESUMEN

The thermally activated delayed fluorescence (TADF) donor-acceptor (D-A) molecule, DMAC-TRZ, is used as a TADF emitter "probe" to distinguish the environmental effects of a range of solid-state host materials in guest-host systems. Using the guest's photophysical behavior in solution as a benchmark, a comprehensive study using a variety of typical TADF organic light-emitting diode hosts with different characteristics provides a clearer understanding of guest-host interactions and what affects emitter performance in solid state. We investigate which are the key host characteristics that directly affect charge-transfer (CT) state energy and singlet triplet energy gaps. Using time-resolved photoluminescence measurements, we use the CT state energy distribution obtained from the full width at half-maximum (fwhm) of the emission band and correlate this with other photophysical properties such as the apparent dynamic red shift of CT emission on-set to estimate the disorder-induced heterogeneity of D-A dihedral angles and singlet triplet gaps. Further, the delayed emission stabilization energy value and time-dependent CT band fwhm are shown to be related to a combination of host's rigidity, emitter molecule packing, and the energy difference between guest and host lowest energy triplet states. Concentration dependence studies show that emitter dimerization/aggregation can improve as well as reduce emission efficiency depending on the characteristics of the host. Two similar host materials, mCPCN and mCBPCN, with optimum host characteristics show completely different behaviors, and their hosting potential is extensively explored. We demonstrate that type I and type III TADF emitters behave differently in the same host and that the materials with intrinsic small ΔE ST have the smallest disorder-induced CT energy and reverse intersystem crossing rate dispersion. We also present an optimized method to define the actual triplet energy of a guest-host system, a crucial parameter in understanding the overall mechanism of the TADF efficiency of the system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...