Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 27(6): 109929, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799566

RESUMEN

Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-ßH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.

2.
bioRxiv ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37503145

RESUMEN

Appropriate tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with highly variable demand for insulin synthesis. An efficient UPR ensures a sufficient beta cell mass and secretory output but can also affect beta cell resilience to autoimmune aggression. The factors regulating protein homeostasis in the face of metabolic and immune challenges are insufficiently understood. We examined beta cell adaptation to stress in mice deficient for insulin-degrading enzyme (IDE), a ubiquitous protease with high affinity for insulin and genetic association with type 2 diabetes. IDE deficiency induced a low-level UPR in both C57BL/6 and autoimmune non-obese diabetic (NOD) mice, associated with rapamycin-sensitive beta cell proliferation strongly enhanced by proteotoxic stress. Moreover, in NOD mice, IDE deficiency protected from spontaneous diabetes and triggered an additional independent pathway, conditional on the presence of islet inflammation but inhibited by proteotoxic stress, highlighted by strong upregulation of regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. Our findings establish a key role of IDE in islet cell protein homeostasis, identify a link between low-level UPR and proliferation, and reveal an UPR-independent anti-inflammatory islet cell response uncovered in the absence of IDE of potential interest in autoimmune diabetes.

3.
Nat Commun ; 11(1): 1973, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332728

RESUMEN

The genetics of quiescence is an emerging field compared to that of growth, yet both states generate spontaneous mutations and genetic diversity fueling evolution. Reconciling mutation rates in dividing conditions and mutation accumulation as a function of time in non-dividing situations remains a challenge. Nitrogen-starved fission yeast cells reversibly arrest proliferation, are metabolically active and highly resistant to a variety of stresses. Here, we show that mutations in stress- and mitogen-activated protein kinase (S/MAPK) signaling pathways are enriched in aging cultures. Targeted resequencing and competition experiments indicate that these mutants arise in the first month of quiescence and expand clonally during the second month at the expense of the parental population. Reconstitution experiments show that S/MAPK modules mediate the sacrifice of many cells for the benefit of some mutants. These findings suggest that non-dividing conditions promote genetic diversity to generate a social cellular environment prone to kin selection.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Mitosis , Mutación , Nitrógeno/fisiología , Schizosaccharomyces/genética , Schizosaccharomyces/fisiología , Técnicas de Cocultivo , ADN/metabolismo , Citometría de Flujo , Variación Genética , Genotipo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Análisis de Secuencia de ADN , Transducción de Señal , Procesos Estocásticos
4.
Elife ; 62017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29252184

RESUMEN

To maintain life across a fluctuating environment, cells alternate between phases of cell division and quiescence. During cell division, the spontaneous mutation rate is expressed as the probability of mutations per generation (Luria and Delbrück, 1943; Lea and Coulson, 1949), whereas during quiescence it will be expressed per unit of time. In this study, we report that during quiescence, the unicellular haploid fission yeast accumulates mutations as a linear function of time. The novel mutational landscape of quiescence is characterized by insertion/deletion (indels) accumulating as fast as single nucleotide variants (SNVs), and elevated amounts of deletions. When we extended the study to 3 months of quiescence, we confirmed the replication-independent mutational spectrum at the whole-genome level of a clonally aged population and uncovered phenotypic variations that subject the cells to natural selection. Thus, our results support the idea that genomes continuously evolve under two alternating phases that will impact on their size and composition.


Asunto(s)
Mutación , Schizosaccharomyces/genética , Variación Biológica Poblacional , Schizosaccharomyces/fisiología , Selección Genética , Factores de Tiempo
5.
PLoS One ; 10(10): e0140645, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26485711

RESUMEN

UVA radiation (320-400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.


Asunto(s)
Replicación del ADN/efectos de la radiación , ADN/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxígeno Singlete/metabolismo , Rayos Ultravioleta , Línea Celular , ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Humanos , Oxidación-Reducción
6.
PLoS One ; 9(4): e95788, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24748152

RESUMEN

Rad52 is a key protein in homologous recombination (HR), a DNA repair pathway dedicated to double strand breaks and recovery of blocked or collapsed replication forks. Rad52 allows Rad51 loading on single strand DNA, an event required for strand invasion and D-loop formation. In addition, Rad52 functions also in Rad51 independent pathways because of its ability to promote single strand annealing (SSA) that leads to loss of genetic material and to promote D-loops formation that are cleaved by Mus81 endonuclease. We have previously reported that fission yeast Rad52 is phosphorylated in a Sty1 dependent manner upon oxidative stress and in cells where the early step of HR is impaired because of lack of Rad51. Here we show that Rad52 is also constitutively phosphorylated in mus81 null cells and that Sty1 partially impinges on such phosphorylation. As upon oxidative stress, the Rad52 phosphorylation in rad51 and mus81 null cells appears to be independent of Tel1, Rad3 and Cdc2. Most importantly, we show that mutating serine 365 to glycine (S365G) in Rad52 leads to loss of the constitutive Rad52 phosphorylation observed in cells lacking Rad51 and to partial loss of Rad52 phosphorylation in cells lacking Mus81. Contrariwise, phosphorylation of Rad52-S365G protein is not affected upon oxidative stress. These results indicate that different Rad52 residues are phosphorylated in a Sty1 dependent manner in response to these distinct situations. Analysis of spontaneous HR at direct repeats shows that mutating serine 365 leads to an increase in spontaneous deletion-type recombinants issued from mitotic recombination that are Mus81 dependent. In addition, the recombination rate in the rad52-S365G mutant is further increased by hydroxyurea, a drug to which mutant cells are sensitive.


Asunto(s)
Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Alelos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Genes Reporteros , Recombinación Homóloga , Mutación , Fenotipo , Fosforilación , Transporte de Proteínas , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
PLoS One ; 8(10): e75751, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116071

RESUMEN

In vertebrates, XRCC3 is one of the five Rad51 paralogs that plays a central role in homologous recombination (HR), a key pathway for maintaining genomic stability. While investigating the potential role of human XRCC3 (hXRCC3) in the inhibition of DNA replication induced by UVA radiation, we discovered that hXRCC3 cysteine residues are oxidized following photosensitization by UVA. Our in silico prediction of the hXRCC3 structure suggests that 6 out of 8 cysteines are potentially accessible to the solvent and therefore potentially exposed to ROS attack. By non-reducing SDS-PAGE we show that many different oxidants induce hXRCC3 oxidation that is monitored in Chinese hamster ovarian (CHO) cells by increased electrophoretic mobility of the protein and in human cells by a slight decrease of its immunodetection. In both cell types, hXRCC3 oxidation was reversed in few minutes by cellular reducing systems. Depletion of intracellular glutathione prevents hXRCC3 oxidation only after UVA exposure though depending on the type of photosensitizer. In addition, we show that hXRCC3 expressed in CHO cells localizes both in the cytoplasm and in the nucleus. Mutating all hXRCC3 cysteines to serines (XR3/S protein) does not affect the subcellular localization of the protein even after exposure to camptothecin (CPT), which typically induces DNA damages that require HR to be repaired. However, cells expressing mutated XR3/S protein are sensitive to CPT, thus highlighting a defect of the mutant protein in HR. In marked contrast to CPT treatment, oxidative stress induces relocalization at the chromatin fraction of both wild-type and mutated protein, even though survival is not affected. Collectively, our results demonstrate that the DNA repair protein hXRCC3 is a target of ROS induced by environmental factors and raise the possibility that the redox environment might participate in regulating the HR pathway.


Asunto(s)
Cisteína/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/fisiología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Células CHO , Camptotecina/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cricetinae , Cricetulus , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Recombinación Homóloga/efectos de los fármacos , Humanos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos
8.
PLoS One ; 8(6): e67705, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23826334

RESUMEN

Insulin Degrading Enzyme (IDE) is a protease conserved through evolution with a role in diabetes and Alzheimer's disease. The reason underlying its ubiquitous expression including cells lacking identified IDE substrates remains unknown. Here we show that the fission yeast IDE homologue (Iph1) modulates cellular sensitivity to endoplasmic reticulum (ER) stress in a manner dependent on TORC1 (Target of Rapamycin Complex 1). Reduced sensitivity to tunicamycin was associated with a smaller number of cells undergoing apoptosis. Wild type levels of tunicamycin sensitivity were restored in iph1 null cells when the TORC1 complex was inhibited by rapamycin or by heat inactivation of the Tor2 kinase. Although Iph1 cleaved hallmark IDE substrates including insulin efficiently, its role in the ER stress response was independent of its catalytic activity since expression of inactive Iph1 restored normal sensitivity. Importantly, wild type as well as inactive human IDE complemented gene-invalidated yeast cells when expressed at the genomic locus under the control of iph1(+) promoter. These results suggest that IDE has a previously unknown function unrelated to substrate cleavage, which links sensitivity to ER stress to a pro-survival role of the TORC1 pathway.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Eliminación de Gen , Insulisina/química , Complejos Multiproteicos/metabolismo , Schizosaccharomyces/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Citoprotección/efectos de los fármacos , Ditiotreitol/farmacología , Endopeptidasas/química , Endopeptidasas/metabolismo , Prueba de Complementación Genética , Genoma Fúngico/genética , Humanos , Insulina/química , Insulina/metabolismo , Insulisina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Modelos Moleculares , Datos de Secuencia Molecular , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Sirolimus/farmacología , Tunicamicina/farmacología
9.
PLoS One ; 7(10): e47987, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118915

RESUMEN

Rad52 is a key player in homologous recombination (HR), a DNA repair pathway that is dedicated to double strand breaks repair and recovery of perturbed replication forks. Here we show that fission yeast Rad52 homologue is phosphorylated when S phase cells are exposed to ROS inducers such as ultraviolet A radiation or hydrogen peroxide, but not to ultraviolet C or camptothecin. Phosphorylation does not depend on kinases Chk1, Rad3, Tel1 or Cdc2, but depends on a functional stress activated protein kinase (SAPK) pathway and can be partially prevented by anti-oxidant treatment. Indeed, cells lacking Sty1, the major fission yeast MAP kinase of the SAPK pathway, do not display Rad52 phosphorylation and have UVA induced Rad52 foci that persist longer if compared to wild type cells. In addition, spontaneous intrachromosomal HR is diminished in cells lacking Sty1 and, more precisely, gene conversion is affected. Moreover, HR induced by site-specific arrest of replication forks is twice less efficient in cells that do not express Sty1. Importantly, impairing HR by deletion of the gene encoding the recombinase Rhp51 leads to Sty1 dependent Rad52 phosphorylation. Thus, SAPK pathway impinges on early step of HR through phosphorylation of Rad52 in cells challenged by oxidative stress or lacking Rhp51 and is required to promote spontaneous gene conversion and recovery from blocked replication forks.


Asunto(s)
Recombinación Homóloga/efectos de la radiación , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Schizosaccharomyces/metabolismo , Camptotecina/farmacología , Replicación del ADN , Conversión Génica , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oxidantes/farmacología , Estrés Oxidativo , Fosforilación , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de la radiación , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Fase S , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de la radiación , Proteínas de Schizosaccharomyces pombe/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Rayos Ultravioleta
10.
Photochem Photobiol Sci ; 11(1): 74-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21901217

RESUMEN

Ultraviolet A (UVA) radiation represents more than 90% of the solar UV radiation reaching Earth's surface. Exposure to solar UV radiation is a major risk in the occurrence of non-melanoma skin cancer. Whole genome sequencing data of melanoma tumors recently obtained makes it possible also to definitively associate malignant melanoma with sunlight exposure. Even though UVB has long been established as the major cause of skin cancer, the relative contribution of UVA is still unclear. In this review, we first report on the formation of DNA damage induced by UVA radiation, and on recent advances on the associated mechanism. We then discuss the controversial data on the UVA-induced mutational events obtained for various types of eukaryotic cells, including human skin cells. This may help unravel the role of UVA in the various steps of photocarcinogenesis. The connection to photocarcinogenesis is more extensively discussed by other authors in this issue.


Asunto(s)
Mutagénesis , Rayos Ultravioleta , Animales , Daño del ADN , Reparación del ADN , Inestabilidad Genómica , Humanos , Piel/efectos de la radiación , Neoplasias Cutáneas/etiología
11.
Cell Cycle ; 7(5): 611-22, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18256544

RESUMEN

UVA radiation, the most abundant solar UV radiation reaching Earth's surface, induces oxidative stress through formation of reactive oxygen species (ROS) that can damage different cell components. Because of the broad spectrum of the possible targets of ROS, the cellular response to this radiation is complex. While extensive studies have allowed dissecting the effects of UVB, UVC and gamma radiations on cell cycle progression, few studies have dealt with the effect of UVA so far. Here we use Schizosaccharomyces pombe as a model organism to study biological effects of UVA radiation in living organisms. Through analysis of cell cycle progression in different mutant backgrounds we demonstrate that UVA delays cell cycle progression in G(2) cells in a dose dependent manner. However, despite Chk1 phosphorylation and in contrast to treatments with others genotoxic agents, this cell cycle delay is only partially dependent on DNA integrity checkpoint pathway. We also demonstrate that UVA irradiation of S phase cells slows down DNA replication in a checkpoint independent manner, activates Chk1 to prevent entry into abnormal mitosis and induces formation of Rad22 (homologue to human Rad52) foci. This indicates that DNA structure integrity is challenged. Furthermore, the cell cycle delay observed in checkpoint mutants exposed to UVA is not abolished when stress response pathway is inactivated or when down regulation of protein synthesis is prevented. In conclusion, fission yeast is a useful model to dissect the fundamental molecular mechanisms involved in UVA response that may contribute to skin cancer and aging.


Asunto(s)
Ciclo Celular/efectos de la radiación , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de la radiación , Rayos Ultravioleta , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Citometría de Flujo , Fase G2/efectos de los fármacos , Fase G2/efectos de la radiación , Hidroxiurea/farmacología , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Mutación/genética , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Proteínas Quinasas/metabolismo , Recombinación Genética/efectos de los fármacos , Recombinación Genética/efectos de la radiación , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismo
13.
Mol Cell Biol ; 25(17): 7889-99, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16107732

RESUMEN

Living organisms experience constant threats that challenge their genome stability. The DNA damage checkpoint pathway coordinates cell cycle progression with DNA repair when DNA is damaged, thus ensuring faithful transmission of the genome. The spindle assembly checkpoint inhibits chromosome segregation until all chromosomes are properly attached to the spindle, ensuring accurate partition of the genetic material. Both the DNA damage and spindle checkpoint pathways participate in genome integrity. However, no clear connection between these two pathways has been described. Here, we analyze mutants in the BRCT domains of fission yeast Crb2, which mediates Chk1 activation, and provide evidence for a novel function of the Chk1 pathway. When the Crb2 mutants experience damaged replication forks upon inhibition of the religation activity of topoisomerase I, the Chk1 DNA damage pathway induces sustained activation of the spindle checkpoint, which in turn delays metaphase-to-anaphase transition in a Mad2-dependent fashion. This new pathway enhances cell survival and genome stability when cells undergo replicative stress in the absence of a proficient G(2)/M DNA damage checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Huso Acromático/efectos de los fármacos , Inhibidores de Topoisomerasa I , Alelos , Camptotecina/farmacología , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Cromosomas Fúngicos , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/genética , Farmacorresistencia Fúngica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genoma Fúngico , Proteínas Mad2 , Mutación/genética , Proteínas Nucleares/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal/efectos de los fármacos , Huso Acromático/metabolismo
14.
Nucleic Acids Res ; 31(17): 5064-73, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12930957

RESUMEN

In mammalian and budding yeast cells treated with genotoxic agents, different proteins implicated in detecting, signalling or repairing DNA lesions form nuclear foci. We studied foci formed by proteins involved in these processes in living fission yeast cells, which is amenable to genetic and molecular analysis. Using fluorescent tags, we analysed subnuclear localisations of the DNA damage checkpoint protein Rad9, of the homologous recombination protein Rad22 and of PCNA, which are implicated in many aspects of DNA metabolism. After inducing double strand breaks (DSBs) with ionising radiations, Rad22, Rad9 and PCNA form a low number of nuclear foci. Rad9 recruitment to foci depends on the presence of Rad1, Hus1 and Rad17, but is independent of downstream checkpoint effectors and of homologous recombination proteins. Likewise, Rad22 and PCNA form foci despite inactive homologous recombination repair and impaired DNA damage checkpoint. Rad22 and Rad9 foci co-localise completely, whereas PCNA co-localises with Rad22 and Rad9 only partially. Foci do not disassemble in cells unable to repair DNA by homologous recombination. Thus, in fission yeast, DSBs are detected by the DNA damage checkpoint and are repaired by homologous recombination at a few spatially confined subnuclear compartments where Rad22, Rad9 and PCNA concentrate independently.


Asunto(s)
Núcleo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Hongos/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fase G2/genética , Fase G2/efectos de la radiación , Rayos gamma , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/efectos de la radiación , Proteínas de Schizosaccharomyces pombe/genética
15.
Genes Cells ; 8(7): 573-86, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12839619

RESUMEN

BACKGROUND: In eukaryotic cells DNA structure checkpoints organize the cellular responses of DNA repair and transient cell cycle arrest and thereby ensure genomic stability. To investigate the exact role of crb2+ in the DNA damage checkpoint response, a genetic screen was carried out in order to identify suppressors of the conditional MMS sensitivity of a crb2-1 mutant. Here we report the isolation of rhp51+ as a multicopy suppressor. RESULTS: We show that suppression is not specific for the checkpoint mutant while it is specific for the MMS treatment. Rescue by rhp51+ over-expression is not a consequence of increased recombination repair or checkpoint compensation and epistasis analysis confirms that crb2+ and rhp51+ function in different pathways. A tight linkage between the two pathways is nevertheless suggested by the complementary expression or modification of Crb2 and Rhp51 proteins. Crb2 protein stability is down-regulated when Rhp51 is over-expressed and up-regulated in the absence of Rhp51. The up-regulation of Crb2 is independent of the activation of DNA structure checkpoints. Conversely Rhp51 is more readily activated and differentially modified in the absence of Crb2 or other checkpoint proteins. CONCLUSIONS: We conclude that fission yeast Crb2 and Rhp51 function in two parallel, tightly connected and coordinately regulated pathways.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efectos de los fármacos , ADN de Hongos/efectos de los fármacos , Proteínas de Unión al ADN/genética , Dosificación de Gen , Metilmetanosulfonato/toxicidad , Mutágenos/toxicidad , Mutación , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Daño del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Genes Supresores , Unión Proteica , Recombinasa Rad51
16.
J Mol Biol ; 326(4): 1081-94, 2003 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-12589755

RESUMEN

We have characterized spSet1p, the Schizosaccharomyces pombe ortholog of the budding yeast histone H3 methyltransferase Set1p. SpSet1p catalyzes methylation of H3 at K4, in vivo and in vitro. Deleting spset1 partially affects telomeric and centromeric silencing. Strikingly, lack of spSet1p causes elongation of telomeres in wild-type cells and in most DNA damage checkpoint rad mutant cells, but not in cells lacking the ATM kinase Rad3 or its associated protein Rad26. Interestingly, spset1 deletion specifically causes a reduction in sensitivity to ultraviolet radiation of the PCNA-like checkpoint mutants hus1 and rad1, but not of cells devoid of Rad3. This partial suppression was not due to restoration of checkpoint function or to transcriptional induction of DNA repair genes. Moreover, spset1 allows recovery specifically of the crb2 checkpoint mutant upon treatment with the replication inhibitor hydroxyurea but not upon UV irradiation. Nevertheless, the pathway induced in spset1 cells cannot substitute for the Mus81/Rqh1 DNA damage tolerance pathway. Our results suggest that SpSet1p and the ATM kinase Rad3 function in a common genetic pathway linking chromatin to telomere length regulation and DNA repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Metiltransferasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Telómero/metabolismo , Factores de Transcripción/metabolismo , Antineoplásicos/metabolismo , Proteínas de Ciclo Celular/genética , Supervivencia Celular , Centrómero/metabolismo , Quinasa de Punto de Control 2 , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Silenciador del Gen/fisiología , Genes cdc , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Hidroxiurea/metabolismo , Metilación , Metiltransferasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Rayos Ultravioleta
17.
Genes Cells ; 7(7): 663-73, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12081644

RESUMEN

BACKGROUND: Chk1 kinase is activated by phosphorylation at serine-345 by Rad3 checkpoint kinase and is required for DNA damage checkpoint in late S and G2 phase of S. pombe cell cycle. We studied the ability of two chk1 mutants, chk1-1 and chk1-2, to undergo phosphorylation and to delay cell cycle progression in response to different types of DNA lesions. RESULTS: Both the Chk1-1 and Chk1-2 mutant proteins are phosphorylated to various extents when DNA is damaged in early G2 phase of cell cycle by either UV irradiation or gamma irradiation. However, chk1-2 mutant does not delay cell cycle progression in a dose dependent manner specifically upon gamma irradiations. This defect is not associated with an important loss of survival. Furthermore, both chk1 mutants survive to Camptothecin treatment despite undetectable Chk1-1 or Chk1-2 phosphorylated forms. We show that both mutant proteins are not phosphorylated in cds1 devoid cells treated with ribonucleotide reductase inhibitor hydroxyurea or when the replisome is affected by a thermosensitive mutation in DNA polymerase delta. This inability is associated with the loss of checkpoint function. We found that an increased level of Crb2/Rhp9 protein specifically complements the defect of the chk1-1 mutant allowing Chk1-1 phosphorylation upon treatment with hydroxyurea of dcds1 cells. CONCLUSIONS: Mutants chk1-1 and chk1-2 behave differently according to the type of lesion generated on DNA.


Asunto(s)
Daño del ADN , Proteínas Quinasas/fisiología , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/enzimología , Alelos , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/fisiología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN de Hongos/efectos de los fármacos , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/fisiología , Hidroxiurea/farmacología , Mutación , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/fisiología , Fosforilación , Proteínas Quinasas/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de la radiación , Temperatura , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...