Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 949407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388729

RESUMEN

Background: Lipoxin A4 (LXA4) has anti-inflammatory and pro-resolutive roles in inflammation. We evaluated the effects and mechanisms of action of LXA4 in titanium dioxide (TiO2) arthritis, a model of prosthesis-induced joint inflammation and pain. Methods: Mice were stimulated with TiO2 (3mg) in the knee joint followed by LXA4 (0.1, 1, or 10ng/animal) or vehicle (ethanol 3.2% in saline) administration. Pain-like behavior, inflammation, and dosages were performed to assess the effects of LXA4 in vivo. Results: LXA4 reduced mechanical and thermal hyperalgesia, histopathological damage, edema, and recruitment of leukocytes without liver, kidney, or stomach toxicity. LXA4 reduced leukocyte migration and modulated cytokine production. These effects were explained by reduced nuclear factor kappa B (NFκB) activation in recruited macrophages. LXA4 improved antioxidant parameters [reduced glutathione (GSH) and 2,2-azino-bis 3-ethylbenzothiazoline-6-sulfonate (ABTS) levels, nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and Nrf2 protein expression], reducing reactive oxygen species (ROS) fluorescent detection induced by TiO2 in synovial fluid leukocytes. We observed an increase of lipoxin receptor (ALX/FPR2) in transient receptor potential cation channel subfamily V member 1 (TRPV1)+ DRG nociceptive neurons upon TiO2 inflammation. LXA4 reduced TiO2-induced TRPV1 mRNA expression and protein detection, as well TRPV1 co-staining with p-NFκB, indicating reduction of neuronal activation. LXA4 down-modulated neuronal activation and response to capsaicin (a TRPV1 agonist) and AITC [a transient receptor potential ankyrin 1 (TRPA1) agonist] of DRG neurons. Conclusion: LXA4 might target recruited leukocytes and primary afferent nociceptive neurons to exert analgesic and anti-inflammatory activities in a model resembling what is observed in patients with prosthesis inflammation.


Asunto(s)
Artritis , Lipoxinas , Animales , Ratones , FN-kappa B , Factor 2 Relacionado con NF-E2/genética , Lipoxinas/farmacología , Líquido Sinovial , Inflamación , Canales Catiónicos TRPV/genética
2.
Molecules ; 28(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677929

RESUMEN

Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone's (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis.


Asunto(s)
Artritis , Chalconas , Hesperidina , Ratones , Animales , Nociceptores/metabolismo , Chalconas/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Artritis/tratamiento farmacológico , Estrés Oxidativo , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Hiperalgesia/tratamiento farmacológico , Citocinas/metabolismo
3.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615318

RESUMEN

In self-revolving gram-negative Escherichia coli infection, Resolvin D5 (RvD5) was found to enhance bacteria phagocytosis and reduce the production of inflammatory mediators, contributing to the resolution of infection. LPS (lipopolysaccharide) is a gram-negative bacterial structure product which activates the immune system and, at high doses, leads to endotoxemia. To our knowledge, the effect of RvD5 against LPS endotoxemia has not been investigated to date. Female Swiss mice received an i.p. treatment with RvD5 (0.1, 1 or 10 ng/animal). After 1 h, they were stimulated with LPS (10 mg/kg, i.v.), and samples were collected after additional 6 h. The resulting data demonstrated that RvD5 protected the kidneys (urea and creatinine serum levels) from tissue injury. These effects were related to an improvement in histopathological parameters and a reduction of enzymatic markers of leukocyte infiltration, pro-inflammatory cytokine (IL-1ß, TNF-α, and IL-6) production, and oxidative stress. Antioxidant markers were also increased by RvD5, but IL-10 (an anti-inflammatory cytokine) levels were unaltered. We also observed that RvD5 reduced the infiltration of CD45+ hematopoietic cells into the kidneys, reduced the activation of NFκB and promoted the Nrf2 pathway by reducing Keap-1 levels. Our data indicate that RvD5 may be a therapeutic possibility to reduce kidney lesions in LPS endotoxemia.


Asunto(s)
Endotoxemia , Lipopolisacáridos , Femenino , Ratones , Animales , Lipopolisacáridos/toxicidad , Endotoxemia/inducido químicamente , Endotoxemia/tratamiento farmacológico , Riñón , Ácidos Docosahexaenoicos/metabolismo
4.
Toxicon ; 200: 3-12, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34153310

RESUMEN

Scorpionism is a public health burden in Brazil. Tityus bahiensis is responsible for most accidents in the Southeastern region of Brazil. Here, the hyperalgesic mechanisms of Tityus bahiensis venom were investigated, focusing on the role of pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 1 beta [IL-1ß]) and activation of the transcription factor NFκB. Intraplantar (i.pl.) administration of Tityus bahiensis venom (0.2, 0.6, 1.2 and 2.4 µg/20 µL i.pl.) induced mechanical hyperalgesia and thermal hyperalgesia. The 2.4 µg dose of Tityus bahiensis venom induced overt pain-like behavior and increased myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities, TNF-α and IL-1ß levels in the paw tissue. Systemic pre-treatment with etanercept (soluble TNF-α receptor; 10 mg/kg), IL-1ra (IL-1 receptor antagonist; 30 mg/kg) and pyrrolidine dithiocarbamate (PDTC, nuclear factor kappa B [NFκB] inhibitor; 100 mg/kg) inhibited Tityus bahiensis venom-induced mechanical and thermal hyperalgesia, MPO and NAG activity and overt pain-like behavior. These data demonstrate the involvement of TNF-α and IL-1ß signaling as well as NFκB activation in Tityus bahiensis venom-induced mechanical and thermal hyperalgesia, overt pain-like behavior, and MPO activity and NAG activity, indicating thus, that targeting these mechanisms might contribute to reducing the pain in this scorpionism.


Asunto(s)
Dolor , Ponzoñas , Animales , Hiperalgesia/inducido químicamente , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Escorpiones , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...