Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(18): 11060-11082, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39258548

RESUMEN

HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which includes a central prion-like domain (PrLD) with capsid binding FG motif and C-terminal mixed-charge domain (MCD), to LLPS activity and to HIV-1 infection remain unclear. Herein, we determined that the PrLD and MCD both contribute to CPSF6 LLPS activity in vitro. Akin to FG mutant CPSF6, infection of cells expressing MCD-deleted CPSF6 uncharacteristically arrested at the nuclear rim. While heterologous MCDs effectively substituted for CPSF6 MCD function during HIV-1 infection, Arg-Ser domains from related SR proteins were largely ineffective. While MCD-deleted and wildtype CPSF6 proteins displayed similar capsid binding affinities, the MCD imparted LLPS-dependent higher-order binding and co-aggregation with capsids in vitro and in cellulo. NS depletion reduced CPSF6 puncta formation without significantly affecting integration into NS-proximal chromatin, and appending the MCD onto a heterologous capsid binding protein partially restored virus nuclear penetration and integration targeting in CPSF6 knockout cells. We conclude that MCD-dependent CPSF6 condensation with capsids underlies post-nuclear incursion for viral DNA integration and HIV-1 pathogenesis.


Asunto(s)
Cápside , Núcleo Celular , ADN Viral , VIH-1 , Integración Viral , Factores de Escisión y Poliadenilación de ARNm , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/química , VIH-1/genética , VIH-1/metabolismo , Humanos , Cápside/metabolismo , Cápside/química , ADN Viral/metabolismo , ADN Viral/genética , Núcleo Celular/metabolismo , Dominios Proteicos , Unión Proteica , Células HEK293 , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Células HeLa , Separación de Fases
2.
PLoS Pathog ; 20(9): e1012537, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39259747

RESUMEN

HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid. Recent studies have shown that HIV-1 cores enter the nucleus prior to capsid disassembly. Interactions of the viral capsid with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Adaptation of two of the mutant viruses in cell culture resulted in additional substitutions that restored elasticity and rescued infectivity and nuclear entry. We also show that capsid-targeting compound PF74 and the antiviral drug Lenacapavir reduce core elasticity and block HIV-1 nuclear entry at concentrations that preserve interactions between the viral core and the nuclear envelope. Our results indicate that elasticity is a fundamental property of the HIV-1 core that enables nuclear entry, thereby facilitating infection. These results provide new insights into the role of the capsid in HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.


Asunto(s)
Elasticidad , Infecciones por VIH , VIH-1 , VIH-1/fisiología , Humanos , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Internalización del Virus , Cápside/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , Simulación de Dinámica Molecular , Microscopía de Fuerza Atómica , Poro Nuclear/metabolismo , Indoles , Fenilalanina/análogos & derivados
3.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37808653

RESUMEN

HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid 1,2 . Recent studies have shown that HIV- 1 cores enter the nucleus prior to capsid disassembly 3-5 . Interactions with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Suppressors of the mutants restored elasticity and rescued infectivity and nuclear entry. Elasticity was also reduced by treatment of cores with the capsid-targeting compound PF74 and the antiviral drug lenacapavir. Our results indicate that capsid elasticity is a fundamental property of the HIV-1 core that enables its passage through the nuclear pore complex, thereby facilitating infection. These results provide new insights into the mechanisms of HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.

4.
Nat Commun ; 14(1): 5614, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699872

RESUMEN

HIV-1 capsid (CA) stability is important for viral replication. E45A and P38A mutations enhance and reduce core stability, thus impairing infectivity. Second-site mutations R132T and T216I rescue infectivity. Capsid lattice stability was studied by solving seven crystal structures (in native background), including P38A, P38A/T216I, E45A, E45A/R132T CA, using molecular dynamics simulations of lattices, cryo-electron microscopy of assemblies, time-resolved imaging of uncoating, biophysical and biochemical characterization of assembly and stability. We report pronounced and subtle, short- and long-range rearrangements: (1) A38 destabilized hexamers by loosening interactions between flanking CA protomers in P38A but not P38A/T216I structures. (2) Two E45A structures showed unexpected stabilizing CANTD-CANTD inter-hexamer interactions, variable R18-ring pore sizes, and flipped N-terminal ß-hairpin. (3) Altered conformations of E45Aa α9-helices compared to WT, E45A/R132T, WTPF74, WTNup153, and WTCPSF6 decreased PF74, CPSF6, and Nup153 binding, and was reversed in E45A/R132T. (4) An environmentally sensitive electrostatic repulsion between E45 and D51 affected lattice stability, flexibility, ion and water permeabilities, electrostatics, and recognition of host factors.


Asunto(s)
Proteínas de la Cápside , VIH-1 , Proteínas de la Cápside/genética , VIH-1/genética , Microscopía por Crioelectrón , Cápside , Biofisica
5.
Nat Commun ; 13(1): 5879, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202818

RESUMEN

Cellular proteins CPSF6, NUP153 and SEC24C play crucial roles in HIV-1 infection. While weak interactions of short phenylalanine-glycine (FG) containing peptides with isolated capsid hexamers have been characterized, how these cellular factors functionally engage with biologically relevant mature HIV-1 capsid lattices is unknown. Here we show that prion-like low complexity regions (LCRs) enable avid CPSF6, NUP153 and SEC24C binding to capsid lattices. Structural studies revealed that multivalent CPSF6 assembly is mediated by LCR-LCR interactions, which are templated by binding of CPSF6 FG peptides to a subset of hydrophobic capsid pockets positioned along adjoining hexamers. In infected cells, avid CPSF6 LCR-mediated binding to HIV-1 cores is essential for functional virus-host interactions. The investigational drug lenacapavir accesses unoccupied hydrophobic pockets in the complex to potently impair HIV-1 inside the nucleus without displacing the tightly bound cellular cofactor from virus cores. These results establish previously undescribed mechanisms of virus-host interactions and antiviral action.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Priones , Humanos , Proteínas de la Cápside/metabolismo , Drogas en Investigación , Glicina/metabolismo , VIH-1/metabolismo , Interacciones Microbiota-Huesped , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Fenilalanina/metabolismo , Priones/metabolismo , Integración Viral
6.
PLoS Pathog ; 18(8): e1010754, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35951676

RESUMEN

In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Transporte Activo de Núcleo Celular , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , VIH-1/genética , Virión/metabolismo , Replicación Viral , Desencapsidación Viral , Integración Viral
7.
Nat Microbiol ; 6(4): 435-444, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33649557

RESUMEN

Early events of the human immunodeficiency virus 1 (HIV-1) lifecycle, such as post-entry virus trafficking, uncoating and nuclear import, are poorly characterized because of limited understanding of virus-host interactions. Here, we used mass spectrometry-based proteomics to delineate cellular binding partners of curved HIV-1 capsid lattices and identified Sec24C as an HIV-1 host dependency factor. Gene deletion and complementation in Jurkat cells revealed that Sec24C facilitates infection and markedly enhances HIV-1 spreading infection. Downregulation of Sec24C in HeLa cells substantially reduced HIV-1 core stability and adversely affected reverse transcription, nuclear import and infectivity. Live-cell microscopy showed that Sec24C co-trafficked with HIV-1 cores in the cytoplasm during virus ingress. Biochemical assays demonstrated that Sec24C directly and specifically interacted with hexameric capsid lattices. A 2.3-Å resolution crystal structure of Sec24C228-242 in the complex with a capsid hexamer revealed that the Sec24C FG-motif bound to a pocket comprised of two adjoining capsid subunits. Combined with previous data1-4, our findings indicate that a capsid-binding FG-motif is conserved in unrelated proteins present in the cytoplasm (Sec24C), the nuclear pore (Nup153; refs. 3,4) and the nucleus (CPSF6; refs. 1,2). We propose that these virus-host interactions during HIV-1 trafficking across different cellular compartments are crucial for productive infection of target cells.


Asunto(s)
VIH-1/fisiología , Proteínas de Transporte Vesicular/metabolismo , Replicación Viral , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Sitios de Unión , Cápside/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , VIH-1/metabolismo , Interacciones Huésped-Patógeno , Humanos , Lentivirus de los Primates/metabolismo , Lentivirus de los Primates/fisiología , Poro Nuclear/metabolismo , Unión Proteica , Transcripción Reversa , Relación Estructura-Actividad , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Integración Viral
9.
Viruses ; 12(11)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143125

RESUMEN

An assembly of capsid proteins (CA) form the mature viral core enclosing the HIV-1 ribonucleoprotein complex. Discrepant findings have been reported regarding the cellular sites and the extent of core disassembly (uncoating) in infected cells. Here, we combined single-virus imaging and time-of-drug-addition assays to elucidate the kinetic relationship between uncoating, reverse transcription, and nuclear import of HIV-1 complexes in cell lines and monocyte-derived macrophages (MDMs). By using cyclophilin A-DsRed (CDR) as a marker for CA, we show that, in contrast to TZM-bl cells, early cytoplasmic uncoating (loss of CDR) is limited in MDMs and is correlated with the efficiency of reverse transcription. However, we find that reverse transcription is dispensable for HIV-1 nuclear import, which progressed through an uncoating step at the nuclear pore. Comparison of the kinetics of nuclear import and the virus escape from inhibitors targeting distinct steps of infection, as well as direct quantification of viral DNA synthesis, revealed that reverse transcription is completed after nuclear import of HIV-1 complexes. Collectively, these results suggest that reverse transcription is dispensable for the uncoating step at the nuclear pore and that vDNA synthesis is completed in the nucleus of unrelated target cells.


Asunto(s)
Núcleo Celular/metabolismo , VIH-1/fisiología , Macrófagos/virología , Transcripción Reversa , Desencapsidación Viral , Transporte Activo de Núcleo Celular , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Núcleo Celular/virología , Células Cultivadas , Células HEK293 , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Cinética , Microscopía Confocal , Poro Nuclear/metabolismo , Imagen de Lapso de Tiempo
10.
Science ; 370(6514): 360-364, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33060363

RESUMEN

The potent HIV-1 capsid inhibitor GS-6207 is an investigational principal component of long-acting antiretroviral therapy. We found that GS-6207 inhibits HIV-1 by stabilizing and thereby preventing functional disassembly of the capsid shell in infected cells. X-ray crystallography, cryo-electron microscopy, and hydrogen-deuterium exchange experiments revealed that GS-6207 tightly binds two adjoining capsid subunits and promotes distal intra- and inter-hexamer interactions that stabilize the curved capsid lattice. In addition, GS-6207 interferes with capsid binding to the cellular HIV-1 cofactors Nup153 and CPSF6 that mediate viral nuclear import and direct integration into gene-rich regions of chromatin. These findings elucidate structural insights into the multimodal, potent antiviral activity of GS-6207 and provide a means for rationally developing second-generation therapies.


Asunto(s)
Fármacos Anti-VIH , Cápside , VIH-1 , Humanos , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Cápside/química , Cápside/efectos de los fármacos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Células HEK293 , Células HeLa , VIH-1/química , VIH-1/efectos de los fármacos , Factores de Escisión y Poliadenilación de ARNm/química , Proteínas de Complejo Poro Nuclear/química , Dominios Proteicos , Integración Viral
11.
Nat Commun ; 11(1): 3505, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665593

RESUMEN

The early steps of HIV-1 infection, such as uncoating, reverse transcription, nuclear import, and transport to integration sites are incompletely understood. Here, we imaged nuclear entry and transport of HIV-1 replication complexes in cell lines, primary monocyte-derived macrophages (MDMs) and CD4+ T cells. We show that viral replication complexes traffic to and accumulate within nuclear speckles and that these steps precede the completion of viral DNA synthesis. HIV-1 transport to nuclear speckles is dependent on the interaction of the capsid proteins with host cleavage and polyadenylation specificity factor 6 (CPSF6), which is also required to stabilize the association of the viral replication complexes with nuclear speckles. Importantly, integration site analyses reveal a strong preference for HIV-1 to integrate into speckle-associated genomic domains. Collectively, our results demonstrate that nuclear speckles provide an architectural basis for nuclear homing of HIV-1 replication complexes and subsequent integration into associated genomic loci.


Asunto(s)
Infecciones por VIH/virología , VIH-1/patogenicidad , Linfocitos T CD4-Positivos/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma Viral/genética , Células HEK293 , Infecciones por VIH/genética , VIH-1/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Microscopía Fluorescente , Virología , Integración Viral/genética , Integración Viral/fisiología , Replicación Viral/genética , Replicación Viral/fisiología
12.
J Biol Chem ; 294(50): 19111-19118, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31694918

RESUMEN

Live cell fluorescence imaging is the method of choice for studying dynamic processes, such as nuclear transport, vesicular trafficking, and virus entry and egress. However, endogenous cellular autofluorescence masks a useful fluorescence signal, limiting the ability to reliably visualize low-abundance fluorescent proteins. Here, we employed synchronously amplified fluorescence image recovery (SAFIRe), which optically alters ground versus photophysical dark state populations within fluorescent proteins to modulate and selectively detect their background-free emission. Using a photoswitchable rsFastLime fluorescent protein combined with a simple illumination and image-processing scheme, we demonstrate the utility of this approach for suppressing undesirable, unmodulatable fluorescence background. Significantly, we adapted this technique to different commercial wide-field and spinning-disk confocal microscopes, obtaining >10-fold improvements in signal to background. SAFIRe allowed visualization of rsFastLime targeted to mitochondria by efficiently suppressing endogenous autofluorescence or overexpressed cytosolic unmodulatable EGFP. Suppression of the overlapping EGFP signal provided a means to perform multiplexed imaging of rsFastLime and spectrally overlapping fluorophores. Importantly, we used SAFIRe to reliably visualize and track single rsFastLime-labeled HIV-1 particles in living cells exhibiting high and uneven autofluorescence signals. Time-lapse SAFIRe imaging can be performed for an extended period of time to visualize HIV-1 entry into cells. SAFIRe should be broadly applicable for imaging live cell dynamics with commercial microscopes, even in strongly autofluorescent cells or cells expressing spectrally overlapping fluorescent proteins.


Asunto(s)
Fluorescencia , VIH-1/aislamiento & purificación , Imagen Óptica , Animales , Supervivencia Celular , Proteínas Fluorescentes Verdes/química , Células HEK293 , Humanos , Ratones , Microscopía Fluorescente , Células 3T3 NIH
13.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31167922

RESUMEN

The HIV-1 capsid executes essential functions that are regulated by capsid stability and host factors. In contrast to increasing knowledge on functional roles of capsid-interacting host proteins during postentry steps, less is known about capsid stability and its impact on intracellular events. Here, using the antiviral compound PF-3450074 (PF74) as a probe for capsid function, we uncovered a novel phenotype of capsid stability that has a profound effect on innate sensing of viral DNA by the DNA sensor cGAS. A single mutation, R143A, in the capsid protein conferred resistance to high concentrations of PF74, without affecting capsid binding to PF74. A cell-free assay showed that the R143A mutant partially counteracted the capsid-destabilizing activity of PF74, pointing to capsid stabilization as a resistance mechanism for the R143A mutant. In monocytic THP-1 cells, the R143A virus, but not the wild-type virus, suppressed cGAS-dependent innate immune activation. These results suggest that capsid stabilization improves the shielding of viral DNA from innate sensing. We found that a naturally occurring transmitted founder (T/F) variant shares the same properties as the R143A mutant with respect to PF74 resistance and DNA sensing. Imaging assays revealed delayed uncoating kinetics of this T/F variant and the R143A mutant. All these phenotypes of this T/F variant were controlled by a genetic polymorphism located at the trimeric interface between capsid hexamers, thus linking these capsid-dependent properties. Overall, this work functionally connects capsid stability to innate sensing of viral DNA and reveals naturally occurring phenotypic variation in HIV-1 capsid stability.IMPORTANCE The HIV-1 capsid, which is made from individual viral capsid proteins (CA), is a target for a number of antiviral compounds, including the small-molecule inhibitor PF74. In the present study, we utilized PF74 to identify a transmitted/founder (T/F) strain that shows increased capsid stability. Interestingly, PF74-resistant variants prevented cGAS-dependent innate immune activation under a condition where the other T/F strains induced type I interferon. These observations thus reveal a new CA-specific phenotype that couples capsid stability to viral DNA recognition by cytosolic DNA sensors.


Asunto(s)
Cápside/metabolismo , ADN Viral , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Nucleotidiltransferasas/metabolismo , Secuencia de Aminoácidos , Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular Tumoral , Resistencia a la Enfermedad , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Humanos , Indoles/farmacología , Mutación , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Estabilidad Proteica
14.
Elife ; 82019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31120420

RESUMEN

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising new class of antiretroviral agents that disrupt proper viral maturation by inducing hyper-multimerization of IN. Here we show that lead pyridine-based ALLINI KF116 exhibits striking selectivity for IN tetramers versus lower order protein oligomers. IN structural features that are essential for its functional tetramerization and HIV-1 replication are also critically important for KF116 mediated higher-order IN multimerization. Live cell imaging of single viral particles revealed that KF116 treatment during virion production compromises the tight association of IN with capsid cores during subsequent infection of target cells. We have synthesized the highly active (-)-KF116 enantiomer, which displayed EC50 of ~7 nM against wild type HIV-1 and ~10 fold higher, sub-nM activity against a clinically relevant dolutegravir resistant mutant virus suggesting potential clinical benefits for complementing dolutegravir therapy with pyridine-based ALLINIs.


HIV-1 inserts its genetic code into human genomes, turning healthy cells into virus factories. To do this, the virus uses an enzyme called integrase. Front-line treatments against HIV-1 called "integrase strand-transfer inhibitors" stop this enzyme from working. These inhibitors have helped to revolutionize the treatment of HIV/AIDS by protecting the cells from new infections. But, the emergence of drug resistance remains a serious problem. As the virus evolves, it changes the shape of its integrase protein, substantially reducing the effectiveness of the current therapies. One way to overcome this problem is to develop other therapies that can kill the drug resistant viruses by targeting different parts of the integrase protein. It should be much harder for the virus to evolve the right combination of changes to escape two or more treatments at once. A promising class of new compounds are "allosteric integrase inhibitors". These chemical compounds target a part of the integrase enzyme that the other treatments do not yet reach. Rather than stopping the integrase enzyme from inserting the viral code into the human genome, the new inhibitors make integrase proteins clump together and prevent the formation of infectious viruses. At the moment, these compounds are still experimental. Before they are ready for use in people, researchers need to better understand how they work, and there are several open questions to answer. Integrase proteins work in groups of four and it is not clear how the new compounds make the integrases form large clumps, or what this does to the virus. Understanding this should allow scientists to develop improved versions of the drugs. To answer these questions, Koneru et al. first examined two of the new compounds. A combination of molecular analysis and computer modelling revealed how they work. The compounds link many separate groups of four integrases with each other to form larger and larger clumps, essentially a snowball effect. Live images of infected cells showed that the clumps of integrase get stuck outside of the virus's protective casing. This leaves them exposed, allowing the cell to destroy the integrase enzymes. Koneru et al. also made a new compound, called (-)-KF116. Not only was this compound able to tackle normal HIV-1, it could block viruses resistant to the other type of integrase treatment. In fact, in laboratory tests, it was 10 times more powerful against these resistant viruses. Together, these findings help to explain how allosteric integrase inhibitors work, taking scientists a step closer to bringing them into the clinic. In the future, new versions of the compounds, like (-)-KF116, could help to tackle drug resistance in HIV-1.


Asunto(s)
Antivirales/farmacología , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , Multimerización de Proteína , Piridinas/farmacología , Regulación Alostérica/efectos de los fármacos , Antivirales/química , Células HEK293 , Integrasa de VIH/química , Inhibidores de Integrasa VIH/química , Células HeLa , Humanos , Modelos Moleculares , Dominios Proteicos , Piridinas/química , Estereoisomerismo
15.
J Drug Des Res ; 5(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30393786

RESUMEN

Recent efforts by both academic and pharmaceutical researchers have focused on the HIV-1 capsid (CA) protein as a new therapeutic target. An interprotomer pocket within the hexamer configuration of the CA, which is also a binding site for key host dependency factors, is the target of the most widely studied CA inhibitor compound PF-3450074 (PF-74). Despite its popularity, PF-74 suffers from properties that limit its usefulness as a lead, most notably it's extremely poor metabolic stability. To minimize unfavorable qualities, we investigated bioisosteric modification of the PF-74 scaffold as a first step in redeveloping this compound. Using a field-based bioisostere identification method, coupled with biochemical and biological assessment, we have created four new compounds that inhibit HIV-1 infection and that bind to the assembled CA hexamer. Detailed mechanism of action studies indicates that the modifications alter the manner in which these new compounds affect HIV-1 capsid core stability, as compared to the parental compound. Further investigations are underway to redevelop these compounds to optimize potency and drug-like characteristics and to deeply define the mechanism of action.

16.
Viruses ; 10(5)2018 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-29783762

RESUMEN

Live-cell imaging of single HIV-1 entry offers a unique opportunity to delineate the spatio-temporal regulation of infection. Novel virus labeling and imaging approaches enable the visualization of key steps of HIV-1 entry leading to nuclear import, integration into the host genome, and viral protein expression. Here, we discuss single virus imaging strategies, focusing on live-cell imaging of single virus fusion and productive uncoating that culminates in HIV-1 infection.


Asunto(s)
Núcleo Celular/metabolismo , Infecciones por VIH/patología , VIH-1/metabolismo , Imagen Óptica , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Modelos Biológicos , Análisis de la Célula Individual , Proteínas Virales/química , Proteínas Virales/metabolismo , Internalización del Virus , Desencapsidación Viral
17.
Cell Host Microbe ; 23(4): 536-548.e6, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29649444

RESUMEN

The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteína p24 del Núcleo del VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Poro Nuclear/virología , Desencapsidación Viral , Células HEK293 , Humanos , Microscopía Fluorescente , Imagen Óptica
18.
J Biol Chem ; 292(49): 20196-20207, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29046351

RESUMEN

Enveloped viruses transfer their genomes into host cells by fusing their membrane to that of the cell. To visualize single-virus fusion in living cells, researchers take advantage of the proteolytic maturation of HIV, type 1 (HIV-1), which can generate free fluorescent proteins within the viral particle. Co-labeling viruses with a content marker and a fluorescently tagged Vpr (a viral core protein) enables detection of single-virus fusions, but a major limitation of this approach is that not all viral particles incorporate both markers. Here we designed a labeling strategy based on the bifunctional mCherry-2xCL-YFP-Vpr construct, in which 2xCL denotes a tandem cleavage site for the viral protease. This bifunctional marker was efficiently cleaved during virus maturation, producing free mCherry and the core-associated YFP-Vpr. A nearly perfect colocalization of these two markers in virions and their fixed 1:1 ratio enabled automated detection of single-particle fusion in both fixed and live cells based on loss of the mCherry signal. Furthermore, a drop in FRET efficiency between YFP and mCherry because of cleavage of the bifunctional marker, which manifested as a marked shift in the normalized YFP/mCherry fluorescence ratio, reliably predicted viral protease activity in single virions. This feature could discriminate between the particles containing free mCherry, and therefore likely representing mature viruses, and immature particles whose fusion cannot be detected. In summary, our new labeling strategy offers several advantages compared with previous approaches, including increased reliability and throughput of detection of viral fusion. We anticipate that our method will have significant utility for studying viral fusion and maturation.


Asunto(s)
Fluorescencia , Proteasa del VIH/metabolismo , Ingeniería de Proteínas/métodos , Coloración y Etiquetado/métodos , Virión/metabolismo , Internalización del Virus , Automatización , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Métodos , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Proteína Fluorescente Roja
19.
PLoS Pathog ; 13(1): e1006181, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28129379

RESUMEN

HIV-1 particles assemble and bud from the plasma membrane of infected T lymphocytes. Infected macrophages, in contrast, accumulate particles within an apparent intracellular compartment known as the virus-containing compartment or VCC. Many aspects of the formation and function of the VCC remain unclear. Here we demonstrate that VCC formation does not actually require infection of the macrophage, but can be reproduced through the exogenous addition of non-infectious virus-like particles or infectious virions to macrophage cultures. Particles were captured by Siglec-1, a prominent cell surface lectin that attaches to gangliosides on the lipid envelope of the virus. VCCs formed within infected macrophages were readily targeted by the addition of ganglioside-containing virus-like particles to the extracellular media. Depletion of Siglec-1 from the macrophage or depletion of gangliosides from viral particles prevented particle uptake into the VCC and resulted in substantial reductions of VCC volume. Furthermore, Siglec-1-mediated virion capture and subsequent VCC formation was required for efficient trans-infection of autologous T cells. Our results help to define the nature of this intracellular compartment, arguing that it is a compartment formed by particle uptake from the periphery, and that this compartment can readily transmit virus to target T lymphocytes. Inhibiting or eliminating the VCC may be an important component of strategies to reduce HIV transmission and to eradicate HIV reservoirs.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/patogenicidad , Macrófagos/virología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Cuerpos de Inclusión Viral/ultraestructura , Macrófagos/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Imagen de Lapso de Tiempo , Virión/patogenicidad
20.
PLoS Pathog ; 12(6): e1005709, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27322072

RESUMEN

Disassembly of the cone-shaped HIV-1 capsid in target cells is a prerequisite for establishing a life-long infection. This step in HIV-1 entry, referred to as uncoating, is critical yet poorly understood. Here we report a novel strategy to visualize HIV-1 uncoating using a fluorescently tagged oligomeric form of a capsid-binding host protein cyclophilin A (CypA-DsRed), which is specifically packaged into virions through the high-avidity binding to capsid (CA). Single virus imaging reveals that CypA-DsRed remains associated with cores after permeabilization/removal of the viral membrane and that CypA-DsRed and CA are lost concomitantly from the cores in vitro and in living cells. The rate of loss is modulated by the core stability and is accelerated upon the initiation of reverse transcription. We show that the majority of single cores lose CypA-DsRed shortly after viral fusion, while a small fraction remains intact for several hours. Single particle tracking at late times post-infection reveals a gradual loss of CypA-DsRed which is dependent on reverse transcription. Uncoating occurs both in the cytoplasm and at the nuclear membrane. Our novel imaging assay thus enables time-resolved visualization of single HIV-1 uncoating in living cells, and reveals the previously unappreciated spatio-temporal features of this incompletely understood process.


Asunto(s)
Infecciones por VIH , VIH-1 , Imagen de Lapso de Tiempo/métodos , Desencapsidación Viral/fisiología , Western Blotting , Ciclofilina A , Colorantes Fluorescentes , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...