Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 130(5): 2657-2672, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32027617

RESUMEN

Hair cells, the mechanosensory receptors of the inner ear, are responsible for hearing and balance. Hair cell death and consequent hearing loss are common results of treatment with ototoxic drugs, including the widely used aminoglycoside antibiotics. Induction of heat shock proteins (HSPs) confers protection against aminoglycoside-induced hair cell death via paracrine signaling that requires extracellular heat shock 70-kDa protein (HSP70). We investigated the mechanisms underlying this non-cell-autonomous protective signaling in the inner ear. In response to heat stress, inner ear tissue releases exosomes that carry HSP70 in addition to canonical exosome markers and other proteins. Isolated exosomes from heat-shocked utricles were sufficient to improve survival of hair cells exposed to the aminoglycoside antibiotic neomycin, whereas inhibition or depletion of exosomes from the extracellular environment abolished the protective effect of heat shock. Hair cell-specific expression of the known HSP70 receptor TLR4 was required for the protective effect of exosomes, and exosomal HSP70 interacted with TLR4 on hair cells. Our results indicate that exosomes are a previously undescribed mechanism of intercellular communication in the inner ear that can mediate nonautonomous hair cell survival. Exosomes may hold potential as nanocarriers for delivery of therapeutics against hearing loss.


Asunto(s)
Exosomas/metabolismo , Células Ciliadas Auditivas/metabolismo , Animales , Antibacterianos/toxicidad , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Femenino , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Respuesta al Choque Térmico/fisiología , Técnicas In Vitro , Ratones , Ratones Endogámicos CBA , Ratones Noqueados , Modelos Biológicos , Neomicina/toxicidad , Ototoxicidad/genética , Ototoxicidad/metabolismo , Ototoxicidad/patología , Embarazo , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba
2.
Nat Commun ; 10(1): 1117, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850599

RESUMEN

Sensory hair cells, the mechanoreceptors of the auditory and vestibular systems, harbor two specialized elaborations of the apical surface, the hair bundle and the cuticular plate. In contrast to the extensively studied mechanosensory hair bundle, the cuticular plate is not as well understood. It is believed to provide a rigid foundation for stereocilia motion, but specifics about its function, especially the significance of its integrity for long-term maintenance of hair cell mechanotransduction, are not known. We discovered that a hair cell protein called LIM only protein 7 (LMO7) is specifically localized in the cuticular plate and the cell junction. Lmo7 KO mice suffer multiple cuticular plate deficiencies, including reduced filamentous actin density and abnormal stereociliar rootlets. In addition to the cuticular plate defects, older Lmo7 KO mice develop abnormalities in inner hair cell stereocilia. Together, these defects affect cochlear tuning and sensitivity and give rise to late-onset progressive hearing loss.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Audición/fisiología , Proteínas con Dominio LIM/deficiencia , Factores de Transcripción/deficiencia , Actinas/metabolismo , Animales , Cóclea/fisiología , Modelos Animales de Enfermedad , Células Ciliadas Auditivas/ultraestructura , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Internas/ultraestructura , Audición/genética , Pérdida Auditiva/etiología , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Microscopía Electrónica de Rastreo , Estereocilios/genética , Estereocilios/fisiología , Estereocilios/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/fisiología
3.
Front Cell Neurosci ; 11: 252, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28878625

RESUMEN

The first major recognition of drug-induced hearing loss can be traced back more than seven decades to the development of streptomycin as an antimicrobial agent. Since then at least 130 therapeutic drugs have been recognized as having ototoxic side-effects. Two important classes of ototoxic drugs are the aminoglycoside antibiotics and the platinum-based antineoplastic agents. These drugs save the lives of millions of people worldwide, but they also cause irreparable hearing loss. In the inner ear, sensory hair cells (HCs) and spiral ganglion neurons (SGNs) are important cellular targets of these drugs, and most mechanistic studies have focused on the cell-autonomous responses of these cell types in response to ototoxic stress. Despite several decades of studies on ototoxicity, important unanswered questions remain, including the cellular and molecular mechanisms that determine whether HCs and SGNs will live or die when confronted with ototoxic challenge. Emerging evidence indicates that other cell types in the inner ear can act as mediators of survival or death of sensory cells and SGNs. For example, glia-like supporting cells (SCs) can promote survival of both HCs and SGNs. Alternatively, SCs can act to promote HC death and inhibit neural fiber expansion. Similarly, tissue resident macrophages activate either pro-survival or pro-death signaling that can influence HC survival after exposure to ototoxic agents. Together these data indicate that autonomous responses that occur within a stressed HC or SGN are not the only (and possibly not the primary) determinants of whether the stressed cell ultimately lives or dies. Instead non-cell-autonomous responses are emerging as significant determinants of HC and SGN survival vs. death in the face of ototoxic stress. The goal of this review is to summarize the current evidence on non-cell-autonomous responses to ototoxic stress and to discuss ways in which this knowledge may advance the development of therapies to reduce hearing loss caused by these drugs.

4.
J Neurosci ; 35(5): 1999-2014, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25653358

RESUMEN

Approximately one-third of known deafness genes encode proteins located in the hair bundle, the sensory hair cell's mechanoreceptive organelle. In previous studies, we used mass spectrometry to characterize the hair bundle's proteome, resulting in the discovery of novel bundle proteins. One such protein is Xin-actin binding repeat containing 2 (XIRP2), an actin-cross-linking protein previously reported to be specifically expressed in striated muscle. Because mutations in other actin-cross-linkers result in hearing loss, we investigated the role of XIRP2 in hearing function. In the inner ear, XIRP2 is specifically expressed in hair cells, colocalizing with actin-rich structures in bundles, the underlying cuticular plate, and the circumferential actin belt. Analysis using peptide mass spectrometry revealed that the bundle harbors a previously uncharacterized XIRP2 splice variant, suggesting XIRP2's role in the hair cell differs significantly from that reported in myocytes. To determine the role of XIRP2 in hearing, we applied clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated genome-editing technology to induce targeted mutations into the mouse Xirp2 gene, resulting in the elimination of XIRP2 protein expression in the inner ear. Functional analysis of hearing in the resulting Xirp2-null mice revealed high-frequency hearing loss, and ultrastructural scanning electron microscopy analyses of hair cells demonstrated stereocilia degeneration in these mice. We thus conclude that XIRP2 is required for long-term maintenance of hair cell stereocilia, and that its dysfunction causes hearing loss in the mouse.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Ciliadas Auditivas/metabolismo , Audición , Proteínas con Dominio LIM/metabolismo , Proteínas Nucleares/metabolismo , Estereocilios/metabolismo , Animales , Células Cultivadas , Embrión de Pollo , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/genética , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva/genética , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Ratas , Estereocilios/ultraestructura
5.
J Assoc Res Otolaryngol ; 16(1): 67-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25261194

RESUMEN

Cisplatin is a highly successful and widely used chemotherapy for the treatment of various solid malignancies in both adult and pediatric patients. Side effects of cisplatin treatment include nephrotoxicity and ototoxicity. Cisplatin ototoxicity results from damage to and death of cells in the inner ear, including sensory hair cells. We showed previously that heat shock inhibits cisplatin-induced hair cell death in whole-organ cultures of utricles from adult mice. Since heat shock protein 70 (HSP70) is the most upregulated HSP in response to heat shock, we investigated the role of HSP70 as a potential protectant against cisplatin-induced hair cell death. Our data using utricles from HSP70 (-/-) mice indicate that HSP70 is necessary for the protective effect of heat shock against cisplatin-induced hair cell death. In addition, constitutive expression of inducible HSP70 offered modest protection against cisplatin-induced hair cell death. We also examined a second heat-inducible protein, heme oxygenase-1 (HO-1, also called HSP32). HO-1 is an enzyme responsible for the catabolism of free heme. We previously showed that induction of HO-1 using cobalt protoporphyrin IX (CoPPIX) inhibits aminoglycoside-induced hair cell death. Here, we show that HO-1 also offers significant protection against cisplatin-induced hair cell death. HO-1 induction occurred primarily in resident macrophages, with no detectable expression in hair cells or supporting cells. Depletion of macrophages from utricles abolished the protective effect of HO-1 induction. Together, our data indicate that HSP induction protects against cisplatin-induced hair cell death, and they suggest that resident macrophages mediate the protective effect of HO-1 induction.


Asunto(s)
Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Proteínas HSP70 de Choque Térmico/metabolismo , Células Ciliadas Vestibulares/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Ácido Clodrónico , Células Ciliadas Vestibulares/metabolismo , Técnicas In Vitro , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Técnicas de Cultivo de Tejidos
6.
J Clin Invest ; 123(8): 3577-87, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863716

RESUMEN

Mechanosensory hair cells are the receptor cells of hearing and balance. Hair cells are sensitive to death from exposure to therapeutic drugs with ototoxic side effects, including aminoglycoside antibiotics and cisplatin. We recently showed that the induction of heat shock protein 70 (HSP70) inhibits ototoxic drug-induced hair cell death. Here, we examined the mechanisms underlying the protective effect of HSP70. In response to heat shock, HSP70 was induced in glia-like supporting cells but not in hair cells. Adenovirus-mediated infection of supporting cells with Hsp70 inhibited hair cell death. Coculture with heat-shocked utricles protected nonheat-shocked utricles against hair cell death. When heat-shocked utricles from Hsp70-/- mice were used in cocultures, protection was abolished in both the heat-shocked utricles and the nonheat-shocked utricles. HSP70 was detected by ELISA in the media surrounding heat-shocked utricles, and depletion of HSP70 from the media abolished the protective effect of heat shock, suggesting that HSP70 is secreted by supporting cells. Together our data indicate that supporting cells mediate the protective effect of HSP70 against hair cell death, and they suggest a major role for supporting cells in determining the fate of hair cells exposed to stress.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Sáculo y Utrículo/citología , Animales , Apoptosis , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Femenino , Proteínas HSP70 de Choque Térmico/genética , Respuesta al Choque Térmico , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Noqueados , Sáculo y Utrículo/metabolismo , Técnicas de Cultivo de Tejidos
7.
J Neurosci ; 33(7): 3079-93, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407963

RESUMEN

Ototoxicity is a main dose-limiting factor in the clinical application of aminoglycoside antibiotics. Despite longstanding research efforts, our understanding of the mechanisms underlying aminoglycoside ototoxicity remains limited. Here we report the discovery of a novel stress pathway that contributes to aminoglycoside-induced hair cell degeneration. Modifying the previously developed bioorthogonal noncanonical amino acid tagging method, we used click chemistry to study the role of protein synthesis activity in aminoglycoside-induced hair cell stress. We demonstrate that aminoglycosides inhibit protein synthesis in hair cells and activate a signaling pathway similar to ribotoxic stress response, contributing to hair cell degeneration. The ability of a particular aminoglycoside to inhibit protein synthesis and to activate the c-Jun N-terminal kinase (JNK) pathway correlated well with its ototoxic potential. Finally, we report that a Food and Drug Administration-approved drug known to inhibit ribotoxic stress response also prevents JNK activation and improves hair cell survival, opening up novel strategies to prevent and treat aminoglycoside ototoxicity.


Asunto(s)
Aminoglicósidos/toxicidad , Antibacterianos/toxicidad , Citosol/metabolismo , Enfermedades del Oído/inducido químicamente , Inhibidores de la Síntesis de la Proteína/toxicidad , Alanina/análogos & derivados , Alquinos , Aminoglicósidos/metabolismo , Animales , Antibacterianos/metabolismo , Apoptosis/efectos de los fármacos , Western Blotting , Recuento de Células , Embrión de Pollo , Activación Enzimática/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Glicina/análogos & derivados , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos CBA , Niacinamida/análogos & derivados , Niacinamida/farmacología , Técnicas de Cultivo de Órganos , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de la Síntesis de la Proteína/metabolismo , ARN Ribosómico/metabolismo , Sorafenib
8.
Hear Res ; 270(1-2): 21-7, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20971179

RESUMEN

Jun N-terminal kinase (JNK) is activated in cochlear hair cells following acoustic trauma or exposure to aminoglycoside antibiotics. Blockade of JNK activation using mixed lineage kinase (MLK) inhibitors prevents hearing loss and hair cell death following these stresses. Since current pharmacologic inhibitors of MLKs block multiple members of this kinase family, we examined the contribution of the major neuronal family member (MLK3) to stress-induced ototoxicity, usingMlk3(-/-) mice. Immunohistochemical staining revealed that MLK3 is expressed in cochlear hair cells of C57/BL6 mice (but not in Mlk3(-/-) animals). After exposure to acoustic trauma there was no significant difference in DPOAE and ABR values betweenMlk3(-/-) and wild-type mice at 48 h following exposure or 2 weeks later. Susceptibility of hair cells to aminoglycoside toxicity was tested by exposing explanted utricles to gentamicin. Gentamicin-induced hair cell death was equivalent in utricles from wild-type and Mlk3(-/-) mice. Blockade of JNK activation with the pharmacologic inhibitor SP600125 attenuated cell death in utricles from both wild-type and Mlk3(-/-) mice. These data show that MLK3 ablation does not protect against hair cell death following acoustic trauma or exposure to aminoglycoside antibiotics, suggesting that MLK3 is not the major upstream regulator of JNK-mediated hair cell death following these stresses. Rather, other MLK family members such as MLK1, which is also expressed in cochlea, may have a previously unappreciated role in noise- and aminoglycoside-induced ototoxicity.


Asunto(s)
Células Ciliadas Auditivas/enzimología , Pérdida Auditiva Provocada por Ruido/enzimología , Pérdida Auditiva/enzimología , Quinasas Quinasa Quinasa PAM/deficiencia , Animales , Muerte Celular , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Gentamicinas , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Pérdida Auditiva/fisiopatología , Pérdida Auditiva/prevención & control , Pérdida Auditiva Provocada por Ruido/genética , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Emisiones Otoacústicas Espontáneas , Inhibidores de Proteínas Quinasas/farmacología , Factores de Tiempo , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
9.
J Assoc Res Otolaryngol ; 10(2): 191-203, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19241104

RESUMEN

The hair cells of the larval zebrafish lateral line provide a useful preparation in which to study hair cell death and to screen for genes and small molecules that modulate hair cell toxicity. We recently reported preliminary results from screening a small-molecule library for compounds that inhibit aminoglycoside-induced hair cell death. To potentially reduce the time required for development of drugs and drug combinations that can be clinically useful, we screened a library of 1,040 FDA-approved drugs and bioactive compounds (NINDS Custom Collection II). Seven compounds that protect against neomycin-induced hair cell death were identified. Four of the seven drugs inhibited aminoglycoside uptake, based on Texas-Red-conjugated gentamicin uptake. The activities of two of the remaining three drugs were evaluated using an in vitro adult mouse utricle preparation. One drug, 9-amino-1,2,3,4-tetrahydroacridine (tacrine) demonstrated conserved protective effects in the mouse utricle. These results demonstrate that the zebrafish lateral line can be used to screen successfully for drugs within a library of FDA-approved drugs and bioactives that inhibit hair cell death in the mammalian inner ear and identify tacrine as a promising protective drug for future studies.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Células Ciliadas Auditivas/efectos de los fármacos , Sistema de la Línea Lateral/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Sáculo y Utrículo/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/toxicidad , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/administración & dosificación , Relación Dosis-Respuesta a Droga , Masculino , Mecanotransducción Celular , Ratones , Neomicina/administración & dosificación , Neomicina/toxicidad , Tacrina/administración & dosificación , Estados Unidos , United States Food and Drug Administration , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...