Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Neuroanat ; 125: 102162, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115503

RESUMEN

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by progressive dopaminergic neuron loss. Animal models have been used to develop a better understanding of the pathophysiologic mechanisms of PD. However, these models are usually conducted with young animals diverging of the age of PD patients, suggesting a bias in translational science. Thus, the aim of the study was to evaluate the effect of the age on rats in a progressive parkinsonism model induced by reserpine (RES). Adult (6 - 8 month-old) or elderly (18 - 24 month-old) male rats were assigned to six groups: control-elderly (CTL-ELDERLY), reserpine-elderly (RES-ELDERLY), reserpine-elderly withdrawal (RES-ELDERLY WITHDRAWAL), control-adult (CTL-ADULT), reserpine-adult (RES-ADULT), and reserpine-adult withdrawal (RES-ADULT WITHDRAWAL). Animals received 15 injections every other day of RES (0.1 mg / kg) or vehicle during 30 days. Throughout treatment, animals were evaluated in the catalepsy test (every 48 h) and open field test (24 h after the second injection), and weight assessment (every 4 days) was also made. Upon completion of behavioral tests, rat brains were collected for tyrosine hydroxylase (TH) immunohistochemical analysis. Main results demonstrated that RES-treated animals spent more time in the catalepsy bar compared with control groups, moreover the RES-elderly group showed a longer catalepsy time compared with the RES-ADULT group. A shorter time from RES treatment to the development of symptoms was observed in the RES-ADULT group, compared with the RES-ELDERLY group. In addition, RES-induced weight loss in both RES-ELDERLY and RES-ADULT when compared with their corresponding controls. Cessation of RES treatment was followed by weight gain only in the RES-ADULT group. A significant decrease in TH-immunoreactive cells was observed in the substantia nigra pars compacta (SNpc) and dorsal striatum (STR) in the rats in both the RES-ADULT and RES-ELDERLY groups and in the ventral tegmental area in rats in the RES-ADULT group. Furthermore, TH immunoreactivity decrease was not reversible in SNpc and STR in the RES-ELDERLY. These results show that RES has an age-dependent effect in rats, suggesting a greater sensitivity of the dopaminergic pathway to RES with advancing age. These suggest that the RES rat model of parkinsonism can be useful in improving our knowledge on the effect of aging on neurodegeneration.


Asunto(s)
Trastornos Motores , Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Masculino , Ratas , Tirosina 3-Monooxigenasa/metabolismo , Reserpina/toxicidad , Catalepsia , Actividad Motora , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Dopamina/metabolismo , Envejecimiento , Sustancia Negra/metabolismo , Modelos Animales de Enfermedad
2.
Brain Res Bull ; 187: 162-168, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35781030

RESUMEN

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder with a higher susceptibility to occur in men. Studies suggest that this susceptibility is related to the hormonal differences observed between men and women, being a risk factor for PD. In addition, testosterone supplementation has shown controversial results in animal models of PD and parkinsonian patients. This study evaluated the effect of chronic administration of testosterone propionate (TP) on motor behavior and neurochemical parameters in the reserpine-induced rat model of parkinsonism. Male Wistar rats received 15 injections of reserpine (RES - 0.1 mg/kg) every other day and were concomitantly treated with different doses (0.1, 1.0, or 5.0 mg/kg) of daily TP for 30 days. The rats were euthanized 48 h after the 15th injection of RES or vehicle. Brains were removed and subjected to Tyrosine hydroxylase (TH) immunohistochemistry. TP at 1.0 mg/kg reduced the damages caused by reserpine in the vacuous chewing and tong protrusion behaviors and prevented dopaminergic damage in the SNpc, VTA, and Striatum. TP at 5.0 mg/kg reduced the damages caused by reserpine in the catalepsy and tong protrusion behaviors, prevented the weight loss, and prevented dopaminergic damage in the VTA. Our results suggest that chronic administration of TP has a protective effect in a rat model of parkinsonism, improving motor alterations and dopamine depletion induced by RES.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Propionato de Testosterona , Animales , Modelos Animales de Enfermedad , Dopamina/farmacología , Femenino , Humanos , Masculino , Actividad Motora , Trastornos Parkinsonianos/inducido químicamente , Ratas , Ratas Wistar , Reserpina/farmacología , Tirosina 3-Monooxigenasa
3.
Brain Res Bull ; 181: 55-64, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35041849

RESUMEN

Believed to cause damage to the nervous system and possibly being associated with neurodegenerative diseases, deltamethrin (DM) is a type II pyrethroid used in pest control, public health, home environment, and vector control. The objective of this study was to evaluate the motor, cognitive and emotional changes associated with dopaminergic and BDNF imbalance after DM exposure in rats. Sixty Wistar rats (9-10 months-old) were used, under Ethics Committee on Animal Research license (ID 19/2017). The animals were randomly divided into four groups: control (CTL, 0.9% saline), DM2 (2 mg DM in 1.6 mL 0.9% saline), DM4 (4 mg of DM in 1.6 mL of 0.9% saline), and DM8 (8 mg of DM in 1.6 mL of 0.9% saline). DM groups were submitted to 9 or 15 inhalations, one every 48 h. Half of the animals from each group were randomly selected and perfused 24 h after the 9th or 15th inhalation. Throughout the experiment, the animal's behavior were evaluated using catalepsy test, open field, hole-board test, Modified Elevated Plus Maze, and social interaction. At the end of the experiments, the rats were perfused transcardially and their brains were processed for Tyrosine Hydroxylase (TH) and Brain derived neurotrophic factor (BDNF) immunohistochemistries. The animals submitted to 9 inhalations of DM showed a reduction in immunoreactivity for TH in the Substantia nigra pars compacta (SNpc), ventral tegmental area (VTA), and dorsal striatum (DS) areas, and an increase in BDNF in the DS and CA1, CA3 and dentate gyrus (DG) hippocampal areas. Conversely, the animals submitted to 15 inhalations of DM showed immunoreactivity reduced for TH in the SNpc and VTA, and an increase in BDNF in the hippocampal areas (CA3 and DG). Our results indicate that the DM inhalation at different periods induce motor and cognitive impairments in rats. Such alterations were accompanied by dopaminergic system damage and a possible dysfunction on synaptic plasticity.


Asunto(s)
Ansiedad/inducido químicamente , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Insecticidas/farmacología , Trastornos de la Memoria/inducido químicamente , Actividad Motora/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Nitrilos/farmacología , Piretrinas/farmacología , Tirosina 3-Monooxigenasa/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Exposición por Inhalación , Insecticidas/administración & dosificación , Nitrilos/administración & dosificación , Piretrinas/administración & dosificación , Distribución Aleatoria , Ratas , Ratas Wistar , Conducta Social
4.
J Chem Neuroanat ; 112: 101901, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33271217

RESUMEN

Adult neurogenesis has been reported in all major vertebrate taxa. However, neurogenic rates and the number of neurogenic foci vary greatly, and are higher in ancestral taxa. Our study aimed to evaluate the distribution of doublecortin (DCX) and glial fibrillary acidic protein (GFAP) in telencephalic areas of the adult tropical lizard Tropidurus hispidus. We describe evidence for four main neurogenic foci, which coincide anatomically with the ventricular sulci described by the literature. Based on neuronal morphology, we infer four migratory patterns/pathways. In the cortex, patterns of GFAP and DCX staining support radial migrations from ventricular zones into cortical areas and dorsoventricular ridge. Cells radiating from the sulcus septomedialis (SM) seemed to migrate to the medial cortex and dorsal cortex. From the sulcus lateralis (SL), they seemed to be bound for the lateral cortex, central amygdala and nucleus sphericus. We describe a DCX-positive stream originating in the caudal sulcus ventralis and seemingly bound for the olfactory bulb, resembling a rostral migratory stream. We provide evidence for a previously undescribed tangential dorso-septo-caudal migratory stream, with neuroblasts supported by DCX-positive fibers. Finally, we provide evidence for a commissural migration stream seemingly bound for the contralateral nucleus sphericus. Therefore, in addition to two previously known migratory streams, this study provides anatomical evidence in support for two novel migratory routes in amniotes.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Telencéfalo/metabolismo , Animales , Movimiento Celular/fisiología , Proteínas de Dominio Doblecortina , Lagartos , Vías Nerviosas/metabolismo , Células-Madre Neurales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...