RESUMEN
BACKGROUND: Rat eradication from islands is a very effective tool that can free entire ecosystems from the pressure of alien predators. In this study we present the case study of Ventotene (Ponziane Archipelago, central Italy), which to date is the island with by far the greatest number of human inhabitants ever freed from the negative implications of rats. Rat eradication was carried out in the framework of the Life PonDerat project, co-financed by the European Union. Besides considering the conservation benefits due to the removal of rats, we also considered the socio-economic and pathogenic impacts from introduced rats. RESULTS: The overall economic cost of the rats was quantified to be at least 18 500 per year to the residents of the island. Several zoonotic pathogens were detected in the rat population prior to eradication. A reduction in the rodenticide distributed over time on the island was also estimated. Identifying the origin of the rat population allowed for the development of more targeted and effective biosecurity measures. The eradication effort was challenged by the presence of domestic animals and variability in support for baiting in urbanised areas. CONCLUSIONS: The results of this study open up new perspectives on island restoration projects. We demonstrated the cost-effectiveness of the action, including ecosystem restoration, reduction of rat impacts in agricultural systems, and improving overall health and food safety. Our findings will have implications for similar interventions on other islands, potentially bringing significant benefits. © 2023 Society of Chemical Industry.
Asunto(s)
Islas , Animales , Italia , Ratas , Humanos , Control de Roedores/métodos , Especies Introducidas , Aves , Análisis Costo-Beneficio , Zoonosis/prevención & controlRESUMEN
BACKGROUND: Evidence of correlation between genome size, the nuclear haploid DNA content of a cell, environmental factors and life-history traits have been reported in many animal species. Genome size, however, spans over three orders of magnitude across taxa and such a correlation does not seem to follow a universal pattern. In squamate reptiles, the second most species-rich order of vertebrates, there are currently no studies investigating drivers of genome size variability. We run a series of phylogenetic generalized least-squares models on 227 species of squamates to test for possible relationships between genome size and ecological factors including latitudinal distribution, bioclimatic variables and microhabitat use. We also tested whether genome size variation can be associated with parity mode, a highly variable life history trait in this order of reptiles. RESULTS: The best-fitting model showed that the interaction between microhabitat use and parity mode mainly accounted for genome size variation. Larger genome sizes were found in live-bearing species that live in rock/sand ecosystems and in egg-laying arboreal taxa. On the other hand, smaller genomes were found in fossorial live-bearing species. CONCLUSIONS: Environmental factors and species parity mode appear to be among the main parameters explaining genome size variation in squamates. Our results suggest that genome size may favour adaptation of some species to certain environments or could otherwise result from the interaction between environmental factors and parity mode. Integration of genome size and genome sequencing data could help understand the role of differential genome content in the evolutionary process of genome size variation in squamates.
Asunto(s)
Lagartos , Animales , Filogenia , Tamaño del Genoma , Lagartos/genética , Serpientes/genética , Ecosistema , Viviparidad de Animales no Mamíferos/genética , OviparidadRESUMEN
Transitions to physically different environments, such as the water-to-land transition, proved to be the main drivers of relevant evolutionary events. Brachyuran crabs evolved remarkable morphological, behavioral, and physiological adaptations to terrestrial life. Terrestrial species evolved new respiratory structures devoted to replace or support the gills, a multifunctional organ devoted to gas exchanges, ion-regulation and nitrogen excretion. It was hypothesized that microorganisms associated with respiratory apparatus could have facilitated the processes of osmoregulation, respiration, and elimination of metabolites along this evolutionary transition. To test if crab species with different breathing adaptations may host similar microbial communities on their gills, we performed a comparative targeted-metagenomic analysis, selecting two marine and six terrestrial crabs belonging to different families and characterised by different breathing adaptations. We analysed anterior and posterior gills separately according to their different and specific roles. Regardless of their terrestrial or marine adaptations, microbial assemblages were strongly species-specific indicating a non-random association between the host and its microbiome. Significant differences were found in only two terrestrial species when considering posterior vs. anterior gills, without any association with species-specific respiratory adaptations. Our results suggest that all the selected species are strongly adapted to the ecological niche and specific micro-habitat they colonise.
Asunto(s)
Braquiuros , Microbiota , Humanos , Animales , Braquiuros/fisiología , Branquias/metabolismo , Respiración , Frecuencia RespiratoriaRESUMEN
Invasive species have a detrimental impact on native populations, particularly in island ecosystems, and they pose a potential zoonotic and wildlife threat. Black rats (Rattus rattus) are invasive species that disrupt native flora and fauna on islands and serve as potential competent reservoirs for various pathogens and parasites. Microparasites screening was conducted in rat populations from small islands in central Italy (the Pontine Islands and Pianosa) with the aim of assessing the role of rats in maintaining infections, particularly in cases where key reservoir hosts were scarce or absent. We focused on microparasites of zoonotic and veterinary relevance. A total of 53 rats was kill-trapped and target tissues were analysed with molecular techniques. We observed the absence or very low prevalence of Anaplasma spp., while Babesia was found in rats from all locations, marking the first recorded instance of Babesia divergens in wild rats. Data from Pianosa strongly suggest the presence of an autochthonous Leishmania infantum cycle in the Tuscan archipelago islands. Neospora caninum was absent from all islands, even in areas where dogs, the main reservoirs, were present. Toxoplasma gondii was only recorded on the Pontine Islands, where genotyping is needed to shed light on infection dynamics. This study confirms that invasive species, such as rats, may be responsible for maintaining an increased parasitological threat to fauna and human communities in certain ecosystems.
RESUMEN
Microorganisms are ubiquitous in the environment and provide genetic and physiological functions to multicellular organisms. Knowledge on the associated microbiota is becoming highly relevant to understand the host's ecology and biology. Among invertebrates, many examples of endosymbiosis have been described, such as those in corals, ants, and termites. At present, however, little is known on the presence, diversity, and putative roles of the microbiota associated to brachyuran crabs in relation to their environment. In this work we investigated the associated microbiota of three populations of the terrestrial brachyuran crab Chiromantes haematocheir to find evidence of a conserved organ-specific microbiome unrelated to the population of origin and dissimilar from environmental microbial assemblages. Bacterial 16S rRNA gene and fungal ITS sequences were obtained from selected crab organs and environmental matrices to profile microbial communities. Despite the presence of truly marine larval stages and the absence of a gregarious behaviour, favouring microbiota exchanges, we found common, organ-specific microbiota, associated with the gut and the gills of crabs from the different populations (with more than 15% of the genera detected specifically enriched only in one organ). These findings suggest the presence of possible functional roles of the organ-specific microbiota.
RESUMEN
The establishment of marine protected areas is considered the main global strategy to halt the loss of marine biodiversity. Since most of marine areas are open systems, this form of habitat protection cannot prevent their contamination due to human activities performed outside of their borders. Innovative approaches to assess the health status of protected marine habitats are therefore needed. Here we developed a multidisciplinary approach that combines ecological characteristics, bioaccumulation of inorganic and organic pollutants, cell damage (micronuclei frequency, nuclear alterations and LPO) and enzymatic (AChE, CAT, IDH, LDH, GST and CAT) markers focused on an intertidal brachyuran crab, Pachygrapsus marmoratus, to assess the impacts of contaminant exposure on Mediterranean coastal habitats. As study sites we selected two protected areas and two sites within industrial ports of the Ligurian Sea. Our results showed that the selected crab species is an excellent bioindicator. Individuals collected in sites with the highest levels of heavy metal pollution showed the highest signals of stress responses at both cellular and enzymatic levels, coupled with a high incidence of the parasite Sacculina carcini, a signal of impairment of their standard development and reproduction cycle. We could also prove that one of the selected marine protected areas showed the same intensity of impact as its adjacent port site. Our multidisciplinary approach proved to be a valuable tool to assess the environmental quality and health of protected and disturbed Mediterranean coastal environments and to inform efficient management and protection schemes for such habitats.
Asunto(s)
Braquiuros , Humanos , Animales , Ecosistema , Biodiversidad , Contaminación Ambiental , Biomarcadores Ambientales , Mar MediterráneoRESUMEN
The terrestrial environment is an important contributor of microplastics (MPs) to the oceans. Urban streams, strictly interwoven in the city network and to the MPs' terrestrial source, have a relevant impact on the MP budget of large rivers and, in turn, marine areas. We investigated the fluxes (items/day) of MPs and natural fibers of Mugnone Creek, a small stream crossing the highly urbanized landscape of Florence (Italy) and ending in the Arno River (and eventually to the Tyrrhenian Sea). Measurements were done in dry and wet seasons for two years (2019-2020); stream sediments were also collected in 2019. The highest loads of anthropogenic particles were observed in the 2019 wet season (109 items/day) at the creek outlet. The number of items in sediments increased from upstream (500 items/kg) to urban sites (1540 items/kg). Fibers were the dominant shape class; they were mostly cellulosic in composition. Among synthetic items, fragments of butadiene-styrene (SBR), indicative of tire wear, were observed. Domestic wastewater discharge and vehicular traffic are important sources of pollution for Mugnone Creek, especially during rain events. The study of small creeks is of pivotal importance to limit the availability of MPs in the environment.
RESUMEN
The acquisition of data to safeguard marine protected areas located close to ports is important in order to develop plans that allow effective protection from pollution as well as sustainable development of the port. The area Secche della Meloria is a Marine Protected Area (MPA-MEL) three miles from Livorno Harbour (LH), which is characterized by a long history of pollution. Here we studied the bioaccumulation and transcriptomic patterns of the marbled crab, Pachygrapsus marmoratus (Fabricius, 1787) (Crustacea; Brachyura, Grapsidae), inhabiting the two selected sites. Results showed that the two crab populations are significantly different in their chemical composition of trace elements and Polyciclic Aromatic Hydrocarbons (PAHs), and gene expression patterns (1280 DEGs). Enrichment analysis indicated that crabs at LH had the highest stress response genes, and they were associated with higher levels of bioaccumulation detected in body tissues. We are confident that the significant differential gene expression profiles observed between crabs, characterized by significant chemical differences, is associated with responses to contaminant exposure.
Asunto(s)
Braquiuros , Contaminantes Químicos del Agua , Animales , Braquiuros/genética , Alimentos Marinos , Transcriptoma , Contaminantes Químicos del Agua/metabolismoRESUMEN
BACKGROUND: Mangroves are tropical and subtropical intertidal forests colonising sheltered coasts across the world. They host a unique faunal community, dominated by brachyuran crabs and gastropods. These invertebrates strongly contribute to the functionality of the entire forest. The reliable assessment of mangrove faunal diversity is, thus, a crucial step for efficient management and conservation plans, but it is hindered by difficulties in species identification. Here we provide a verified DNA barcode library for brachyuran crabs and gastropods inhabiting the mangroves of the Greater Bay Area, Southern China. In particular, we collected and morphologically identified 1100 specimens of mangrove associated brachyuran crabs and gastropods. The partial sequences of the mtDNA cytochrome oxidase subunit I gene were obtained from 275 specimens. Barcode sequences were then used to delineate Molecular Operational Taxonomic Units (MOTUs), employing three different delimitation methods: the automatic barcode gap discovery (ABGD) method, the general mixed Yule coalescent (GMYC) model and a Bayesian implementation of the Poisson tree processes (bPTP) model. RESULTS: By integrating DNA barcodes with morphology, we identified 44 gastropod species and 58 brachyuran species associated with Hong Kong mangroves, with five and seven new records, for gastropods and crabs, respectively, for the Greater Bay Area. The delineation of MOTUs based on barcode sequences revealed a strong congruence between morphological and molecular identification for both taxa, showing the high reliability of the barcode library. CONCLUSIONS: This study provides the first reference barcode library for mangrove-associated macrobenthic fauna in the Greater Bay Area and represents a reliable tool to management and conservation plans. Our molecular analyses resolved long lasting taxonomic misidentifications and inconsistencies and updated the knowledge on the geographical distribution of Asian mangrove associated fauna, ultimately highlighting a level of biodiversity higher than previously thought for Southern China.
Asunto(s)
Braquiuros , Gastrópodos , Animales , Teorema de Bayes , Braquiuros/genética , China , Código de Barras del ADN Taxonómico , Bosques , Gastrópodos/genética , Hong Kong , Filogenia , Reproducibilidad de los ResultadosRESUMEN
Deforestation results in habitat fragmentation, decreasing diversity, and functional degradation. For mangroves, no data are available on the impact of deforestation on the diversity and functionality of the specialized invertebrate fauna, critical for their functioning. We compiled a global dataset of mangrove invertebrate fauna comprising 364 species from 16 locations, classified into 64 functional entities (FEs). For each location, we calculated taxonomic distinctness (Δ+), functional richness (FRi), functional redundancy (FRe), and functional vulnerability (FVu) to assess functional integrity. Δ+ and FRi were significantly related to air temperature but not to geomorphic characteristics, mirroring the global biodiversity anomaly of mangrove trees. Neither of those two indices was linked to forest area, but both sharply decreased in human-impacted mangroves. About 60% of the locations showed an average FRe < 2, indicating that most of the FEs comprised one species only. Notable exceptions were the Eastern Indian Ocean and west Pacific Ocean locations, but also in this region, 57% of the FEs had no redundancy, placing mangroves among the most vulnerable ecosystems on the planet. Our study shows that despite low redundancy, even small mangrove patches host truly multifunctional faunal assemblages, ultimately underpinning their services. However, our analyses also suggest that even a modest local loss of invertebrate diversity could have significant negative consequences for many mangroves and cascading effects for adjacent ecosystems. This pattern of faunal-mediated ecosystem functionality is crucial for assessing the vulnerability of mangrove forests to anthropogenic impact and provides an approach to planning their effective conservation and restoration.
Asunto(s)
Invertebrados , Humedales , Animales , Biodiversidad , Océano Índico , Invertebrados/fisiología , Océano Pacífico , ÁrbolesRESUMEN
The marble crab Pachygrapsus marmoratus inhabits the rocky shores of the Mediterranean Sea, Black Sea and East Atlantic Ocean. As other intertidal species, it is considered a model species to study the effects of environmental stressors on natural populations. In this study, we performed Illumina next-generation sequencing on eleven P. marmoratus specimens with the aims to (i) reconstruct their whole transcriptome, (ii) perform a functional annotation of the assembled transcriptome and (iii) develop gene-based markers for future genetic and genomic studies on this as well as other brachyuran species. We obtained a transcriptome assembly constituted by 56,308 unigenes and covering about 60.3 Mbp. We detected 43,915 Simple Sequence Repeats (SSRs) and 192,631 high-quality Single Nucleotide Polymorphisms (SNPs). Due to the scarcity of genomic resources in decapods, and crabs in particular, our results constitute a valuable resource for future studies on brachyuran crabs. The present data also represent a sound resource to investigate biological responses to pollution in intertidal and marine populations.
Asunto(s)
Braquiuros/genética , Marcadores Genéticos , Transcriptoma , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia MolecularRESUMEN
The transition to terrestrial environments by formerly aquatic species has occurred repeatedly in many animal phyla and lead to the vast diversity of extant terrestrial species. The differences between aquatic and terrestrial habitats are enormous and involved remarkable morphological and physiological changes. Convergent evolution of various traits is evident among phylogenetically distant taxa, but almost no information is available about the role of symbiotic microbiota in such transition. Here, we suggest that intertidal and terrestrial brachyuran crabs are a perfect model to study the evolutionary pathways and the ecological role of animal-microbiome symbioses, since their transition to land is happening right now, through a number of independent lineages. The microorganisms colonizing the gut of intertidal and terrestrial crabs are expected to play a major role to conquer the land, by reducing water losses and permitting the utilization of novel food sources. Indeed, it has been shown that the microbiomes hosted in the digestive system of terrestrial isopods has been critical to digest plant items, but nothing is known about the microbiomes present in the gut of truly terrestrial crabs. Other important physiological regulations that could be facilitated by microbiomes are nitrogen excretion and osmoregulation in the new environment. We also advocate for advances in comparative and functional genomics to uncover physiological aspects of these ongoing evolutionary processes. We think that the multidisciplinary study of microorganisms associated with terrestrial crabs will shed a completely new light on the biological and physiological processes involved in the sea-land transition.
RESUMEN
Friess et al. discuss the results of conservation efforts for mangrove forests in recent years.
Asunto(s)
Avicennia , Conservación de los Recursos Naturales , Rhizophoraceae , HumedalesRESUMEN
BACKGROUND: The spatial distribution of mangrove crabs has been commonly associated with tree zonation and abiotic factors such as ground temperature and soil granulometry. Conversely, no studies were designed to investigate the role of competition for resources and predation in shaping crab distribution in mangroves, despite these biotic factors are recognised as key determinants for spatial patterns observed in the communities colonising rocky and sandy intertidal habitats.We studied floral and faunal assemblages in two zones of a Sri Lankan mangrove, a man-made upper intertidal level and a natural eulittoral, mid-shore one. Leaf choice experiments were designed to study both feeding rate and intra and inter-specific interactions for food of sesarmid crabs in the two habitats in order to better understand crab spatial distribution. RESULTS: The two intertidal belts differed in terms of floral composition and crab species abundance. The eulittoral zone was strongly dominated by Neosarmatium smithi, while within the elevated littoral fringe four sesarmids (N. smithi, N. asiaticum, N. malabaricum and Muradium tetragonum) were more evenly distributed. At both levels, all sesarmids showed to collect significantly more Bruguiera spp. and Rhizophora apiculata leaves than Excoecaria agallocha ones. There was no temporal segregation in feeding activity among the four species, resulting in a high interference competition for leaves. Regardless of the habitat, N. smithi was always successful in winning inter-specific fights. CONCLUSIONS: Our results showed that the elevated littoral fringe was more crowded with crabs, but was less favourable in terms of food availability and environmental conditions. The dominance of N. smithi in gathering mangrove leaves suggests that this species may segregate the other sesarmids into less favourable habitats. The present data strongly suggest for the first time that interference competition for food can contribute to shape mangrove crab spatial distribution.
Asunto(s)
Distribución Animal , Braquiuros/fisiología , Herbivoria , Hojas de la Planta , Animales , Conducta Competitiva , Euphorbiaceae/crecimiento & desarrollo , Conducta Alimentaria , Cadena Alimentaria , Hojas de la Planta/crecimiento & desarrollo , Rhizophoraceae/crecimiento & desarrollo , Análisis Espacial , Sri Lanka , HumedalesRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0158582.].
RESUMEN
The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima's D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves.
Asunto(s)
Braquiuros/genética , ADN Mitocondrial/genética , Variación Genética , Humedales , Análisis de Varianza , Animales , Proteínas de Artrópodos/genética , Braquiuros/clasificación , ADN Mitocondrial/química , Complejo IV de Transporte de Electrones/genética , Femenino , Genética de Población , Geografía , Haplotipos , Océano Índico , Modelos Lineales , Masculino , Océano Pacífico , Filogenia , Densidad de Población , Reproducción/genética , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
BACKGROUND: The extent of genetic structure of a species is determined by the amount of current gene flow and the impact of historical and demographic factors. Most marine invertebrates have planktonic larvae and consequently wide potential dispersal, so that genetic uniformity should be common. However, phylogeographic investigations reveal that panmixia is rare in the marine realm. Phylogeographic patterns commonly coincide with geographic transitions acting as barriers to gene flow. In the Mediterranean Sea and adjoining areas, the best known barriers are the Atlantic-Mediterranean transition, the Siculo-Tunisian Strait and the boundary between Aegean and Black seas. Here, we perform the so far broadest phylogeographic analysis of the crab Pachygrapsus marmoratus, common across the north-eastern Atlantic Ocean, Mediterranean and Black seas. Previous studies revealed no or weak genetic structuring at meso-geographic scale based on mtDNA, while genetic heterogeneity at local scale was recorded with microsatellites, even if without clear geographic patterns. Continuing the search for phylogeographic signal, we here enlarge the mtDNA dataset including 51 populations and covering most of the species' distribution range. RESULTS: This enlarged dataset provides new evidence of three genetically separable groups, corresponding to the Portuguese Atlantic Ocean, Mediterranean Sea plus Canary Islands, and Black Sea. Surprisingly, hierarchical AMOVA and Principal Coordinates Analysis agree that our Canary Islands population is closer to western Mediterranean populations than to mainland Portugal and Azores populations. Within the Mediterranean Sea, we record genetic homogeneity, suggesting that population connectivity is unaffected by the transition between the western and eastern Mediterranean. The Mediterranean metapopulation seems to have experienced a relatively recent expansion around 100,000 years ago. CONCLUSIONS: Our results suggest that the phylogeographic pattern of P. marmoratus is shaped by the geological history of Mediterranean and adjacent seas, restricted current gene flow among different marginal seas, and incomplete lineage sorting. However, they also caution from exclusively testing well-known biogeographic barriers, thereby neglecting other possible phylogeographic patterns. Mostly, this study provides evidence that a geographically exhaustive dataset is necessary to detect shallow phylogeographic structure within widespread marine species with larval dispersal, questioning all studies where species have been categorized as panmictic based on numerically and geographically limited datasets.
Asunto(s)
Braquiuros/genética , ADN Mitocondrial , Animales , Océano Atlántico , Azores , ADN Mitocondrial/genética , Flujo Génico , Variación Genética , Genética de Población , Mar Mediterráneo , Repeticiones de Microsatélite , Filogeografía , Portugal , Tamaño de la Muestra , Análisis de Secuencia de ADN , EspañaRESUMEN
The presence of boundaries to dispersal has been recently documented for many Indo-West Pacific (IWP) species with planktonic propagules and a widespread distribution. We studied the phylogeography of the mangrove crab Neosarmatium meinerti (Brachyura: Sesarmidae) and the phylogenetic relationship to its presumed sister species N. fourmanoiri in the IWP in order to compare intraspecific with interspecific diversity. Portions of the mitochondrial genes 16S and CoxI were sequenced for 23 specimens of N. meinerti and 5 N. fourmanoiri, while a fragment of the 28S was obtained for a subset of specimens. Genetic data are supplemented by morphometric and based on 37 adult males of N. meinerti and 9 males of N. fourmanoiri. The conserved nuclear 28S reveals the existence of a genetic break between the Indian and Pacific oceans. Otherwise, mitochondrial genes as well as morphometry clearly support the presence of a species complex within N. meinerti composed by four well structured and geographically defined lineages: East African coast; western Indian Ocean islands; South East Asia; and Australia.