Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Immunol ; 14: 1290833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053995

RESUMEN

Helicobacter pylori is a widespread Gram-negative pathogen involved in a variety of gastrointestinal diseases, including gastritis, ulceration, mucosa-associated lymphoid tissue (MALT) lymphoma and gastric cancer. Immune responses aimed at eradication of H. pylori often prove futile, and paradoxically play a crucial role in the degeneration of epithelial integrity and disease progression. We have previously shown that H. pylori infection of primary human monocytes increases their potential to respond to subsequent bacterial stimuli - a process that may be involved in the generation of exaggerated, yet ineffective immune responses directed against the pathogen. In this study, we show that H. pylori-induced monocyte priming is not a common feature of Gram-negative bacteria, as Acinetobacter lwoffii induces tolerance to subsequent Escherichia coli lipopolysaccharide (LPS) challenge. Although the increased reactivity of H. pylori-infected monocytes seems to be specific to H. pylori, it appears to be independent of its virulence factors Cag pathogenicity island (CagPAI), cytotoxin associated gene A (CagA), vacuolating toxin A (VacA) and γ-glutamyl transferase (γ-GT). Utilizing whole-cell proteomics complemented with biochemical signaling studies, we show that H. pylori infection of monocytes induces a unique proteomic signature compared to other pro-inflammatory priming stimuli, namely LPS and the pathobiont A. lwoffii. Contrary to these tolerance-inducing stimuli, H. pylori priming leads to accumulation of NF-кB proteins, including p65/RelA, and thus to the acquisition of a monocyte phenotype more responsive to subsequent LPS challenge. The plasticity of pro-inflammatory responses based on abundance and availability of intracellular signaling molecules may be a heretofore underappreciated form of regulating innate immune memory as well as a novel facet of the pathobiology induced by H. pylori.


Asunto(s)
Helicobacter pylori , FN-kappa B , Humanos , FN-kappa B/metabolismo , Proteínas Bacterianas , Inmunidad Entrenada , Lipopolisacáridos/metabolismo , Proteómica
2.
Curr Opin Immunol ; 76: 102208, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35569416

RESUMEN

Chronic infections are typically characterized by an ineffective immune response to the inducing pathogen. While failing to clear the infectious microbe, the provoked inflammatory processes may cause severe tissue damage culminating in functional impairment of the affected organ. The human pathogen Helicobacter pylori is a uniquely successful Gram-negative microorganism inhabiting the gastric mucosa in approximately 50% of the world's population. This bacterial species has evolved spectacular means of evading immune surveillance and influencing host immunity, leading to a fragile equilibrium between proinflammatory and anti-inflammatory signals, the breakdown of which can have serious consequences for the host, including gastric ulceration and cancer. This review highlights novel insights into this delicate interaction between host and pathogen from an immunological perspective.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Epitelio/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Humanos , Inmunidad
3.
Front Immunol ; 13: 847958, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309333

RESUMEN

Infection with Helicobacter pylori (H. pylori) affects almost half of the world's population and is a major cause of stomach cancer. Although immune cells react strongly to this gastric bacterium, H. pylori is still one of the rare pathogens that can evade elimination by the host and cause chronic inflammation. In the present study, we characterized the inflammatory response of primary human monocytes to repeated H. pylori infection and their responsiveness to an ensuing bacterial stimulus. We show that, although repeated stimulations with H. pylori do not result in an enhanced response, H. pylori-primed monocytes are hyper-responsive to an Escherichia coli-lipopolysaccharide (LPS) stimulation that takes place shortly after infection. This hyper-responsiveness to bacterial stimuli is observed upon infection with viable H. pylori only, while heat-killed H. pylori fails to boost both cytokine secretion and STAT activation in response to LPS. When the secondary challenge occurs several days after the primary infection with live bacteria, H. pylori-infected monocytes lose their hyper-responsiveness. The observation that H. pylori makes primary human monocytes more susceptible to subsequent/overlapping stimuli provides an important basis to better understand how H. pylori can maintain chronic inflammation and thus contribute to gastric cancer progression.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Inmunidad , Inflamación/complicaciones , Lipopolisacáridos/farmacología , Monocitos
4.
Front Immunol ; 12: 751683, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804037

RESUMEN

Innate immune memory, the ability of innate cells to react in a more protective way to secondary challenges, is induced by exposure to infectious and other exogeous and endogenous agents. Engineered nanoparticles are particulate exogenous agents that, as such, could trigger an inflammatory reaction in monocytes and macrophages and could therefore be also able to induce innate memory. Here, we have evaluated the capacity of engineered gold nanoparticles (AuNPs) to induce a memory response or to modulate the memory responses induced by microbial agents. Microbial agents used were in soluble vs. particulate form (MDP and the gram-positive bacteria Staphylococcus aureus; ß-glucan and the ß-glucan-producing fungi C. albicans), and as whole microrganisms that were either killed (S. aureus, C. albicans) or viable (the gram-negative bacteria Helicobacter pylori). The memory response was assessed in vitro, by exposing human primary monocytes from 2-7 individual donors to microbial agents with or without AuNPs (primary response), then resting them for 6 days to allow return to baseline, and eventually challenging them with LPS (secondary memory response). Primary and memory responses were tested as production of the innate/inflammatory cytokine TNFα and other inflammatory and anti-inflammatory factors. While inactive on the response induced by soluble microbial stimuli (muramyl dipeptide -MDP-, ß-glucan), AuNPs partially reduced the primary response induced by whole microorganisms. AuNPs were also unable to directly induce a memory response but could modulate stimulus-induced memory in a circumscribed fashion, limited to some agents and some cytokines. Thus, the MDP-induced tolerance in terms of TNFα production was further exacerbated by co-priming with AuNPs, resulting in a less inflammatory memory response. Conversely, the H. pylori-induced tolerance was downregulated by AuNPs only relative to the anti-inflammatory cytokine IL-10, which would lead to an overall more inflammatory memory response. These effects of AuNPs may depend on a differential interaction/association between the reactive particle surfaces and the microbial components and agents, which may lead to a change in the exposure profiles. As a general observation, however, the donor-to-donor variability in memory response profiles and reactivity to AuNPs was substantial, suggesting that innate memory depends on the individual history of exposures.


Asunto(s)
Candida albicans , Oro/administración & dosificación , Helicobacter pylori , Memoria Inmunológica/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Monocitos/efectos de los fármacos , Staphylococcus aureus , beta-Glucanos/farmacología , Células Cultivadas , Citocinas/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Monocitos/inmunología , Monocitos/microbiología
5.
Int J Mol Sci ; 21(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486097

RESUMEN

Helicobacter pylori (H. pylori) is a stomach pathogen that persistently colonizes the gastric mucosa, often leading to chronic inflammation and gastric pathologies. Although infection with H. pylori is the primary risk factor for gastric cancer, the underlying mechanisms of pathogen persistence and consequential chronic inflammation are still not well understood. Conventional dendritic cells (cDCs), which are among the first immune cells to encounter H. pylori in the gastric lining, and the cytokines and chemokines they secrete, contribute to both acute and chronic inflammation. Therefore, this study aimed to unravel the contributions of specific signaling pathways within human CD1c+ cDCs (cDC2s) to the composition of secreted cytokines and chemokines in H. pylori infection. Here, we show that the type IV secretion system (T4SS) plays only a minor role in H. pylori-induced activation of cDC2s. In contrast, Toll-like receptor 4 (TLR4) signaling drives the secretion of inflammatory mediators, including IL-12 and IL-18, while signaling via TLR10 attenuates the release of IL-1ß and other inflammatory cytokines upon H. pylori infection. The TLR2 pathway significantly blocks the release of CXCL1 and CXCL8, while it promotes the secretion of TNFα and GM-CSF. Taken together, these results highlight how specific TLR-signaling pathways in human cDC2s shape the H. pylori-induced cytokine and chemokine milieu, which plays a pivotal role in the onset of an effective immune response.


Asunto(s)
Quimiocinas/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Receptor Toll-Like 10/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Antígenos CD1/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori , Humanos , Inflamación , Mediadores de Inflamación/metabolismo , Leucocitos Mononucleares/citología , Transducción de Señal , Neoplasias Gástricas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...