Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2783: 159-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478231

RESUMEN

Hydrogels are considered a viable in vitro alternative to monolayer cultures. They provide quintessential characteristics for in vitro studies including biocompatibility, biodegradability, viscoelasticity, hydrophilicity, and low toxicity. Furthermore, many provide necessary extracellular matrix proteins and architecture to support cell growth, proliferation, differentiation, and migration. Synthetic and natural polymer-derived hydrogels both demonstrate positive qualities; however, natural hydrogels have attracted great interest due to their clinical relevancy. In particular, decellularized tissue-derived hydrogels have been identified as a significant resource for tissue engineering applications by mimicking the composition and architecture of their tissue of origin.The use of adipose tissue as a hydrogel has become more prevalent because of limitless resources and accessibility of the tissue itself. Obatala Sciences has established a manufacturing protocol for human decellularized adipose tissue (hDAT) using a series of steps including mechanical disruption, chemical disruption with N-Lauroylsarcosine, and enzymatic digestion with pepsin and hydrochloric acid.


Asunto(s)
Hidrogeles , Andamios del Tejido , Humanos , Hidrogeles/química , Andamios del Tejido/química , Matriz Extracelular/metabolismo , Ingeniería de Tejidos/métodos , Diferenciación Celular
2.
Methods Mol Biol ; 2783: 167-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478232

RESUMEN

Decellularized human-adipose tissue (hDAT) can serve as an alternative to two-dimensional monolayer culture and current ECM hydrogels due to its unlimited availability and cytocompatibility. A major hurdle in the clinical translation and integration of hDAT and other hydrogels into current in vitro culture processes is adherence to current good manufacturing practices (cGMP). Transferring of innovative technologies, including hydrogels, requires the establishing standardized protocols for quality assurance and quality control (QA/QC) of the material.Integration of basic characterization techniques, including physiochemical characterization, structural/morphological characterization, thermal and mechanical characterization, and biological characterization, in addition to the reduction of batch-to-batch variability and establishment of proper sterilization, storage, and fabrication processes verifies the integrity of the hydrogel. Obatala Sciences has established a characterization protocol that involves a series of assays including the evaluation of gelation properties, protein content, glycosaminoglycan content, soluble collagen content, and DNA content of hDAT.


Asunto(s)
Matriz Extracelular , Hidrogeles , Humanos , Hidrogeles/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Control de Calidad , Ingeniería de Tejidos/métodos
3.
Methods Mol Biol ; 2783: 323-333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478244

RESUMEN

Advancements in three-dimensional in vitro cultures pose a need for modification of established two-dimensional culture functional assay methods. Application of three-dimensional in vitro models in drug screening and target validation, specifically in the development of compounds targeting adipose metabolic activity, requires optimization of current glucose uptake and lipolysis assay protocols to effectively measure adipocyte function in a three-dimensional platform. This chapter describes the establishment of three-dimensional cultures using Obatala Sciences' human-derived hydrogel, maintenance and treatment of the cultures, and evaluation of compound response via lipolysis and glucose uptake assays.


Asunto(s)
Adipocitos , Lipólisis , Humanos , Adipocitos/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Dispositivos Laboratorio en un Chip
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473978

RESUMEN

Female breast cancer accounts for 15.2% of all new cancer cases in the United States, with a continuing increase in incidence despite efforts to discover new targeted therapies. With an approximate failure rate of 85% for therapies in the early phases of clinical trials, there is a need for more translatable, new preclinical in vitro models that include cellular heterogeneity, extracellular matrix, and human-derived biomaterials. Specifically, adipose tissue and its resident cell populations have been identified as necessary attributes for current preclinical models. Adipose-derived stromal/stem cells (ASCs) and mature adipocytes are a normal part of the breast tissue composition and not only contribute to normal breast physiology but also play a significant role in breast cancer pathophysiology. Given the recognized pro-tumorigenic role of adipocytes in tumor progression, there remains a need to enhance the complexity of current models and account for the contribution of the components that exist within the adipose stromal environment to breast tumorigenesis. This review article captures the current landscape of preclinical breast cancer models with a focus on breast cancer microphysiological system (MPS) models and their counterpart patient-derived xenograft (PDX) models to capture patient diversity as they relate to adipose tissue.


Asunto(s)
Neoplasias de la Mama , Animales , Humanos , Femenino , Neoplasias de la Mama/patología , Tejido Adiposo/patología , Adipocitos/patología , Obesidad/patología , Células del Estroma/patología , Modelos Animales de Enfermedad
5.
Cell Biol Int ; 48(5): 594-609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321826

RESUMEN

The regeneration of osteochondral lesions by tissue engineering techniques is challenging due to the lack of physicochemical characteristics and dual-lineage (osteogenesis and chondrogenesis). A scaffold with better mechanical properties and dual lineage capability is required for the regeneration of osteochondral defects. In this study, a hydrogel prepared from decellularized human umbilical cord tissue was developed and evaluated for osteochondral regeneration. Mesenchymal stem cells (MSCs) isolated from the umbilical cord were seeded with hydrogel for 28 days, and cell-hydrogel composites were cultured in basal and osteogenic media. Alizarin red staining, quantitative polymerase chain reaction, and immunofluorescent staining were used to confirm that the hydrogel was biocompatible and capable of inducing osteogenic differentiation in umbilical cord-derived MSCs. The findings demonstrate that human MSCs differentiated into an osteogenic lineage following 28 days of cultivation in basal and osteoinductive media. The expression was higher in the cell-hydrogel composites cultured in osteoinductive media, as evidenced by increased levels of messenger RNA and protein expression of osteogenic markers as compared to basal media cultured cell-hydrogel composites. Additionally, calcium deposits were also observed, which provide additional evidence of osteogenic differentiation. The findings demonstrate that the hydrogel is biocompatible with MSCs and possesses osteoinductive capability in vitro. It may be potentially useful for osteochondral regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Osteogénesis/genética , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas , Ingeniería de Tejidos/métodos , Hidrogeles/química , Andamios del Tejido
6.
Adv Biol (Weinh) ; 7(8): e2200332, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37236203

RESUMEN

Hydrogels are 3D scaffolds used as alternatives to in vivo models for disease modeling and delivery of cells and drugs. Existing hydrogel classifications include synthetic, recombinant, chemically defined, plant- or animal-based, and tissue-derived matrices. There is a need for materials that can support both human tissue modeling and clinically relevant applications requiring stiffness tunability. Human-derived hydrogels are not only clinically relevant, but they also minimize the use of animal models for pre-clinical studies. This study aims to characterize XGel, a new human-derived hydrogel as an alternative to current murine-derived and synthetic recombinant hydrogels that features unique physiochemical, biochemical, and biological properties that support adipocyte and bone differentiation. Rheology studies determine the viscosity, stiffness, and gelation features of XGel. Quantitative studies for quality control support consistency in the protein content between lots. Proteomics studies reveal that XGel is predominantly composed of extracellular matrix proteins, including fibrillin, collagens I-VI, and fibronectin. Electron microscopy of the hydrogel provides phenotypic characteristics in terms of porosity and fiber size. The hydrogel demonstrates biocompatibility as a coating material and as a 3D scaffold for the growth of multiple cell types. The results provide insight into the biological compatibility of this human-derived hydrogel for tissue engineering.


Asunto(s)
Hidrogeles , Células Madre , Ingeniería de Tejidos , Hidrogeles/química , Humanos , Matriz Extracelular , Proliferación Celular , Células Madre/citología
7.
Bone Rep ; 17: 101601, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35874168

RESUMEN

Adipose tissue is widely recognized as an abundant and accessible human tissue that serves as a source of cells and extracellular matrix scaffolds for regenerative surgical applications. Increasingly, orthopedic surgeons are turning to adipose tissue as a resource in their treatment of osteoarthritis and related conditions. In the U.S., the regulatory landscape governing the orthopedic surgical utilization of autologous and allogeneic adipose tissue remains complex. This manuscript reviews the Food and Drug Administration's nomenclature and guidance regarding adipose tissue products. Additionally, it surveys recent pre-clinical and clinical trial literature relating to the application of adipose-derived cells and tissues in the treatment of osteoarthritis.

8.
Front Bioeng Biotechnol ; 10: 893992, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845419

RESUMEN

Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.

9.
Bioengineering (Basel) ; 9(6)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35735483

RESUMEN

Tissue engineering is a promising approach for the repair and regeneration of cartilaginous tissue. Appropriate three-dimensional scaffolding materials that mimic cartilage are ideal for the repair of chondral defects. The emerging decellularized tissue-based scaffolds have the potential to provide essential biochemical signals and structural integrity, which mimics the natural tissue environment and directs cellular fate. Umbilical cord-derived hydrogels function as 3D scaffolding material, which support adherence, proliferation, migration, and differentiation of cells due to their similar biochemical composition to cartilage. Therefore, the present study aimed to establish a protocol for the formulation of a hydrogel from decellularized human umbilical cord (DUC) tissue, and assess its application in the proliferation and differentiation of UC-MSCs along chondrogenic lineage. The results showed that the umbilical cord was efficiently decellularized. Subsequently, DUC hydrogel was prepared, and in vitro chondral differentiation of MSCs seeded on the scaffold was determined. The developed protocol efficiently removed the cellular and nuclear content while retaining the extracellular matrix (ECM). DUC tissue, pre-gel, and hydrogels were evaluated by FTIR spectroscopy, which confirmed the gelation from pre-gel to hydrogel. SEM analysis revealed the fibril morphology and porosity of the DUC hydrogel. Calcein AM and Alamar blue assays confirmed the MSC survival, attachment, and proliferation in the DUC hydrogels. Following seeding of UC-MSCs in the hydrogels, they were cultured in stromal or chondrogenic media for 28 days, and the expression of chondrogenic marker genes including TGF-ß1, BMP2, SOX-9, SIX-1, GDF-5, and AGGRECAN was significantly increased (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Moreover, the hydrogel concentration was found to significantly affect the expression of chondrogenic marker genes. The overall results indicate that the DUC-hydrogel is compatible with MSCs and supports their chondrogenic differentiation in vitro.

10.
Cells ; 10(6)2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204869

RESUMEN

Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling of physiologically relevant human adipose tissue. These models are useful for the development of tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems (MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in the identification of 184 independent records, of which 27 were determined to be most relevant to the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC culture and assessment for the production of physiologically relevant in vitro models of human adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality of adipose tissue in vitro. Results from this study suggest the need for more standardized culture methods and further analysis on in vitro tissue functionality. These will be necessary to validate the utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug discovery regulatory process.


Asunto(s)
Adipogénesis , Tejido Adiposo/metabolismo , Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas/metabolismo , Modelos Biológicos , Ingeniería de Tejidos , Tejido Adiposo/citología , Humanos , Células Madre Mesenquimatosas/citología
11.
Stem Cells Dev ; 30(23): 1141-1152, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34130483

RESUMEN

Monitoring wound progression over time is a critical aspect for studies focused on in-depth molecular analysis or on evaluating the efficacy of potential novel therapies. Histopathological analysis of wound biopsies can provide significant insight into healing dynamics, yet there is no standardized and reproducible scoring system currently available. The purpose of this study was to develop and statistically validate a scoring system based on parameters in each phase of healing that can be easily and accurately assessed using either Hematoxylin & Eosin (H&E) or Masson's Trichrome (MT) staining. These parameters included re-epithelization, epithelial thickness index, keratinization, granulation tissue thickness, remodeling, and the scar elevation index. The initial phase of the study was to (1) optimize and clarify healing parameters to limit investigator bias and variability; (2) compare the consistency of parameters assessed using H&E versus MT staining. During the validation phase of this study, the accuracy and reproducibility of this scoring system was independently iterated upon and validated in four different types of murine skin wound models (Excisional; punch biopsy; pressure ulcers; burn wounds). A total of n = 54 histology sections were randomized, blinded, and assigned to two groups of independent investigators (n = 5 per group) for analysis. The sensitivity of each parameter (ranging between 80% and 95%) is reported with illustrations on the appropriate assessment method using ImageJ software. In the validated scoring system, the lowest score (score:0) is associated with an open/unhealed wound as is evident immediately and within the first day postinjury, whereas the highest score (score:12) is associated with a completely closed and healed wound without excessive scarring. This study defines and describes the minimum recommended criteria for assessing wound healing dynamics using the SPOT skin wound score. The acronym SPOT refers to the academic and scientific institutions that were involved in the development of the scoring system, namely, Stellenbosch University, Polish Academy of Sciences, Obatala Sciences, and the University of Texas Southwestern.


Asunto(s)
Piel , Cicatrización de Heridas , Animales , Humanos , Ratones , Reproducibilidad de los Resultados , Piel/patología
12.
Tissue Eng Part A ; 27(7-8): 479-488, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33528293

RESUMEN

International regulatory agencies such as the Food and Drug Administration have mandated that the scientific community develop humanized microphysiological systems (MPS) as an in vitro alternative to animal models in the near future. While the breast cancer research community has long appreciated the importance of three-dimensional growth dynamics in their experimental models, there are remaining obstacles preventing a full conversion to humanized MPS for drug discovery and pathophysiological studies. This perspective evaluates the current status of human tissue-derived cells and scaffolds as building blocks for an "idealized" breast cancer MPS based on bioengineering design principles. It considers the utility of adipose tissue as a potential source of endothelial, lymphohematopoietic, and stromal cells for the support of breast cancer epithelial cells. The relative merits of potential MPS scaffolds derived from adipose tissue, blood components, and synthetic biomaterials is evaluated relative to the current "gold standard" material, Matrigel, a murine chondrosarcoma-derived basement membrane-enriched hydrogel. The advantages and limitations of a humanized breast cancer MPS are discussed in the context of in-process and destructive read-out assays. Impact statement Regulatory authorities have highlighted microphysiological systems as an emerging tool in breast cancer research. This has been led by calls for more predictive human models and reduced animal experimentation. This perspective describes how human-derived cells, extracellular matrices, and hydrogels will provide the building blocks to create breast cancer models that accurately reflect diversity at multiple levels, that is, patient ethnicity, pathophysiology, and metabolic status.


Asunto(s)
Neoplasias de la Mama , Animales , Bioingeniería , Femenino , Humanos , Ratones , Estados Unidos
13.
Biomater Transl ; 2(4): 301-306, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35837416

RESUMEN

Microphysiological systems (MPS) created with human-derived cells and biomaterial scaffolds offer a potential in vitro alternative to in vivo animal models. The adoption of three-dimensional MPS models has economic, ethical, regulatory, and scientific implications for the fields of regenerative medicine, metabolism/obesity, oncology, and pharmaceutical drug discovery. Key opinion leaders acknowledge that MPS tools are uniquely positioned to aid in the objective to reduce, refine, and eventually replace animal experimentation while improving the accuracy of the finding's clinical translation. Adipose tissue has proven to be an accessible and available source of human-derived stromal vascular fraction (SVF) cells, a heterogeneous population available at point of care, and adipose-derived stromal/stem cells, a relatively homogeneous population requiring plastic adherence and culture expansion of the SVF cells. The adipose-derived stromal/stem cells or SVF cells, in combination with human tissue or synthetic biomaterial scaffolds, can be maintained for extended culture periods as three-dimensional MPS models under angiogenic, stromal, adipogenic, or osteogenic conditions. This review highlights recent literature relating to the versatile use of adipose-derived cells as fundamental components of three-dimensional MPS models for discovery research and development. In this context, it compares the merits and limitations of the adipose-derived stromal/stem cells relative to SVF cell models and considers the likely directions that this emerging field of scientific discovery will take in the near future.

14.
Sci Rep ; 10(1): 20035, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208768

RESUMEN

Human adipose-derived stem cells (ASCs) have potential to improve wound healing; however, their equivalents from domestic animals have received less attention as an alternative cell-based therapy for animals or even humans. Hypoxia is essential for maintaining stem cell functionality in tissue-specific niches. However, a cellular response to low oxygen levels has not been demonstrated in pig ASCs. Hence, the goal of our study was to characterize ASCs isolated from the subcutaneous fat of domestic pigs (pASCs) and examine the effect of hypoxia on their proteome and functional characteristics that might reproduce pASCs wound healing ability. Analysis of immunophenotypic and functional markers demonstrated that pASCs exhibited characteristics of mesenchymal stem cells. Proteomic analysis revealed 70 differentially abundant proteins between pASCs cultured under hypoxia (1% O2) or normoxia (21% O2). Among them, 42 proteins were enriched in the cells exposed to low oxygen, whereas 28 proteins showed decrease expression following hypoxia. Differentially expressed proteins were predominantly involved in cell metabolism, regulation of focal and intracellular communication, and attributed to wound healing. Functional examination of hypoxic pASCs demonstrated acquisition of contractile abilities in vitro. Overall, our results demonstrate that hypoxia pre-conditioning impacts the pASC proteome signature and contractile function in vitro and hence, they might be considered for further cell-based therapy study on wound healing.


Asunto(s)
Hipoxia/fisiopatología , Células Madre Mesenquimatosas/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Ontología de Genes , Células Madre Mesenquimatosas/patología , Porcinos
15.
Biomolecules ; 10(10)2020 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992554

RESUMEN

Acute and chronic skin wounds due to burns, pressure injuries, and trauma represent a substantial challenge to healthcare delivery with particular impacts on geriatric, paraplegic, and quadriplegic demographics worldwide. Nevertheless, the current standard of care relies extensively on preventive measures to mitigate pressure injury, surgical debridement, skin flap procedures, and negative pressure wound vacuum measures. This article highlights the potential of adipose-, blood-, and cellulose-derived products (cells, decellularized matrices and scaffolds, and exosome and secretome factors) as a means to address this unmet medical need. The current status of this research area is evaluated and discussed in the context of promising avenues for future discovery.


Asunto(s)
Quemaduras/terapia , Exosomas/trasplante , Hidrogeles/uso terapéutico , Cicatrización de Heridas/genética , Quemaduras/patología , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Celulosa/uso terapéutico , Exosomas/genética , Humanos , Hidrogeles/química , Trasplante de Células Madre Mesenquimatosas/tendencias , Células Madre Mesenquimatosas/citología , Piel/crecimiento & desarrollo , Piel/lesiones , Piel/metabolismo
17.
Stem Cells Int ; 2020: 4242130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587620

RESUMEN

Obesity, defined as a body mass index of 30 kg/m2 or above, has increased considerably in incidence and frequency within the United States and globally. Associated comorbidities including cardiovascular disease, type 2 diabetes mellitus, metabolic syndrome, and nonalcoholic fatty liver disease have led to a focus on the mechanisms promoting the prevention and treatment of obesity. Commonly utilized in vitro models employ human or mouse preadipocyte cell lines in a 2-dimensional (2D) format. Due to the structural, biochemical, and biological limitations of these models, increased attention has been placed on "organ on a chip" technologies for a 3-dimensional (3D) culture. Herein, we describe a method employing cryopreserved primary human stromal vascular fraction (SVF) cells and a human blood product-derived biological scaffold to create a 3D adipose depot in vitro. The "fat-on-chip" 3D cultures have been validated relative to 2D cultures based on proliferation, flow cytometry, adipogenic differentiation, confocal microscopy/immunofluorescence, and functional assays (adipokine secretion, glucose uptake, and lipolysis). Thus, the in vitro culture system demonstrates the critical characteristics required for a humanized 3D white adipose tissue (WAT) model.

18.
Tissue Eng Part B Rev ; 26(6): 586-595, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32216545

RESUMEN

The obesity epidemic and its associated comorbidities present a looming challenge to health care delivery throughout the world. Obesity is characterized as a sterile inflammatory process within adipose tissues leading to dysregulated secretion of bioactive adipokines such as adiponectin and leptin, as well as systemic metabolic dysfunction. The majority of current obesity research has focused primarily on preclinical animal models in vivo and two-dimensional cell culture models in vitro. Neither of these generalized approaches is optimal due to interspecies variability, insufficient accuracy with respect to predicting human outcomes, and failure to recapitulate the three-dimensional (3D) microenvironment. Consequently, there is a growing demand and need for more sophisticated microphysiological systems to reproduce more physiologically accurate human white and brown/beige adipose depots. To address this research need, human and murine cell lines and primary cultures are being combined with bioscaffolds to create functional 3D environments that are suitable for metabolically active adipose organoids in both static and perfusion bioreactor cultures. The development of these technologies will have considerable impact on the future pace of discovery for novel small molecules and biologics designed to prevent and treat metabolic syndrome and obesity in humans. Furthermore, when these adipose tissue models are integrated with other organ systems they will have applicability to obesity-related disorders such as diabetes, nonalcoholic fatty liver disease, and osteoarthritis. Impact statement The current review article summarizes the advances made within the organ-onchip field, as it pertains to adipose tissue models of obesity and obesity-related syndromes, such as diabetes, non-alcoholic fatty liver disease, and osteoarthritis. As humanized 3D adipose-derived constructs become more accessible to the research community, it is anticipated that they will accelerate and enhance the drug discovery pipeline for obesity, diabetes, and metabolic diseases by reducing the preclinical evaluation process and improving predictive accuracy. Such developments, applications, and usages of existing technologies can change the paradigm of personalized medicine and create substantial progress in our approach to modern medicine.


Asunto(s)
Tejido Adiposo Pardo , Dispositivos Laboratorio en un Chip , Animales , Humanos , Ratones , Obesidad/complicaciones
19.
Stem Cells Dev ; 29(7): 452-461, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31992147

RESUMEN

Pressure ulcers (PUs) result in part due to ischemia-reperfusion injury to the skin and present frequently in elderly or quadriplegic patients with reduced mobility. Despite the high economic and societal cost of this condition, PU therapy relies primarily on preventive strategies and invasive surgical intervention. A growing body of clinical literature suggests that localized injection of adipose-derived cells can accelerate and enhance the closure of PUs. The current study systematically evaluated the safety of human adipose stromal vascular fraction (SVF) cells isolated using a closed system device when injected into a murine PU injury model. The human SVF cells were characterized by colony-forming unit-fibroblast and differentiation assays before use. Young (2 months) immunocompetent C57BL/6 mice subjected to a magnet-induced ischemia-reperfusion injury were injected subcutaneously with human SVF cells at increasing doses (0.25-2 million cells). The size of the PU was monitored over a 20-day period. Both female and male mice tolerated the concentration-dependent injection of the SVF cells without complications. While male mice trended toward more rapid wound closure rates in response to lower SVF cell concentrations (0.25-0.5 million cells), female mice responded favorably to higher SVF cell concentrations (1-2 million cells); however, outcomes did not reach statistical significance in either sex. Overall, the study demonstrates that human SVF cells prepared with a closed system device designed for use at point of care can be safely administered for PU therapy in an immunocompetent host animal model.


Asunto(s)
Tejido Adiposo/citología , Úlcera por Presión/patología , Células del Estroma/citología , Adolescente , Animales , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Matriz Extracelular/fisiología , Femenino , Fibroblastos/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/patología , Piel/patología , Células Madre/citología
20.
Stem Cells Dev ; 29(7): 440-451, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31950878

RESUMEN

Pressure injuries/ulcers are frequent complications in elderly, paraplegic, and quadriplegic patients, which account for considerable cost to the international health care economy and remain refractory to current treatment options. Autologous or allogeneic adult stromal/stem cells represent an alternative therapeutic approach. The current study extends prior findings by exploring the safety and efficacy of human adipose-derived stromal/stem cell (ASC) therapy in an established immunocompetent murine skin pressure ulcer model where dermal fibroblast cells (DFCs) served as a control. Human adipose tissue was processed using a closed system device designed for point-of-care use in the operating room and on file with the Food and Drug Administration. Cell characterization was performed using colony-forming unit-fibroblast, differentiation, and immunophenotypic assays in vitro. Wound healing was assessed over a 20-day period based on photomicrographs, histology, and immunohistochemistry. The isolated human ASCs displayed significantly greater colony formation relative to DFCs while both populations exhibited comparable immunophenotype and differentiation potential. Both fresh and cryopreserved human ASCs significantly accelerated and enhanced wound healing in young (2 month) mice of both sexes relative to DFC controls based on tissue architecture and CD68+ cell infiltration. In contrast, while injection of either fresh or cryopreserved human ASCs was safe in older mice, the fresh ASCs significantly enhanced wound closure relative to the cryopreserved ASCs. Overall, these findings support the safety and efficacy of human ASCs isolated using a closed system device designed for clinical procedures in the future treatment of pressure injuries.


Asunto(s)
Tejido Adiposo/citología , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Úlcera por Presión/terapia , Células del Estroma/citología , Adolescente , Animales , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Criopreservación/métodos , Modelos Animales de Enfermedad , Femenino , Fibroblastos/citología , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Células Madre/citología , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA