Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Genom ; 3(2): 100246, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36819661

RESUMEN

The Solve-RD project objectives include solving undiagnosed rare diseases (RD) through collaborative research on shared genome-phenome datasets. The RD-Connect Genome-Phenome Analysis Platform (GPAP), for data collation and analysis, and the European Genome-Phenome Archive (EGA), for file storage, are two key components of the Solve-RD infrastructure. Clinical researchers can identify candidate genetic variants within the RD-Connect GPAP and, thanks to the developments presented here as part of joint ELIXIR activities, are able to remotely visualize the corresponding alignments stored at the EGA. The Global Alliance for Genomics and Health (GA4GH) htsget streaming application programming interface (API) is used to retrieve alignment slices, which are rendered by an integrated genome viewer (IGV) instance embedded in the GPAP. As a result, it is no longer necessary for over 11,000 datasets to download large alignment files to visualize them locally. This work highlights the advantages, from both the user and infrastructure perspectives, of implementing interoperability standards for establishing federated genomics data networks.

2.
Nucleic Acids Res ; 51(D1): D9-D17, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36477213

RESUMEN

The European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) is one of the world's leading sources of public biomolecular data. Based at the Wellcome Genome Campus in Hinxton, UK, EMBL-EBI is one of six sites of the European Molecular Biology Laboratory (EMBL), Europe's only intergovernmental life sciences organisation. This overview summarises the status of services that EMBL-EBI data resources provide to scientific communities globally. The scale, openness, rich metadata and extensive curation of EMBL-EBI added-value databases makes them particularly well-suited as training sets for deep learning, machine learning and artificial intelligence applications, a selection of which are described here. The data resources at EMBL-EBI can catalyse such developments because they offer sustainable, high-quality data, collected in some cases over decades and made openly availability to any researcher, globally. Our aim is for EMBL-EBI data resources to keep providing the foundations for tools and research insights that transform fields across the life sciences.


Asunto(s)
Inteligencia Artificial , Biología Computacional , Manejo de Datos , Bases de Datos Factuales , Genoma , Internet
3.
Nucleic Acids Res ; 50(D1): D980-D987, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34791407

RESUMEN

The European Genome-phenome Archive (EGA - https://ega-archive.org/) is a resource for long term secure archiving of all types of potentially identifiable genetic, phenotypic, and clinical data resulting from biomedical research projects. Its mission is to foster hosted data reuse, enable reproducibility, and accelerate biomedical and translational research in line with the FAIR principles. Launched in 2008, the EGA has grown quickly, currently archiving over 4,500 studies from nearly one thousand institutions. The EGA operates a distributed data access model in which requests are made to the data controller, not to the EGA, therefore, the submitter keeps control on who has access to the data and under which conditions. Given the size and value of data hosted, the EGA is constantly improving its value chain, that is, how the EGA can contribute to enhancing the value of human health data by facilitating its submission, discovery, access, and distribution, as well as leading the design and implementation of standards and methods necessary to deliver the value chain. The EGA has become a key GA4GH Driver Project, leading multiple development efforts and implementing new standards and tools, and has been appointed as an ELIXIR Core Data Resource.


Asunto(s)
Confidencialidad/legislación & jurisprudencia , Genoma Humano , Difusión de la Información/métodos , Fenómica/organización & administración , Investigación Biomédica Traslacional/métodos , Conjuntos de Datos como Asunto , Genotipo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Difusión de la Información/ética , Metadatos/ética , Metadatos/estadística & datos numéricos , Fenómica/historia , Fenotipo
4.
Cell Genom ; 1(2): None, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34820659

RESUMEN

Human biomedical datasets that are critical for research and clinical studies to benefit human health also often contain sensitive or potentially identifying information of individual participants. Thus, care must be taken when they are processed and made available to comply with ethical and regulatory frameworks and informed consent data conditions. To enable and streamline data access for these biomedical datasets, the Global Alliance for Genomics and Health (GA4GH) Data Use and Researcher Identities (DURI) work stream developed and approved the Data Use Ontology (DUO) standard. DUO is a hierarchical vocabulary of human and machine-readable data use terms that consistently and unambiguously represents a dataset's allowable data uses. DUO has been implemented by major international stakeholders such as the Broad and Sanger Institutes and is currently used in annotation of over 200,000 datasets worldwide. Using DUO in data management and access facilitates researchers' discovery and access of relevant datasets. DUO annotations increase the FAIRness of datasets and support data linkages using common data use profiles when integrating the data for secondary analyses. DUO is implemented in the Web Ontology Language (OWL) and, to increase community awareness and engagement, hosted in an open, centralized GitHub repository. DUO, together with the GA4GH Passport standard, offers a new, efficient, and streamlined data authorization and access framework that has enabled increased sharing of biomedical datasets worldwide.

6.
Elife ; 92020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32298230

RESUMEN

In hypoxic stress conditions, glycolysis enzymes assemble into singular cytoplasmic granules called glycolytic (G) bodies. G body formation in yeast correlates with increased glucose consumption and cell survival. However, the physical properties and organizing principles that define G body formation are unclear. We demonstrate that glycolysis enzymes are non-canonical RNA binding proteins, sharing many common mRNA substrates that are also integral constituents of G bodies. Targeting nonspecific endoribonucleases to G bodies reveals that RNA nucleates G body formation and maintains its structural integrity. Consistent with a phase separation mechanism of biogenesis, recruitment of glycolysis enzymes to G bodies relies on multivalent homotypic and heterotypic interactions. Furthermore, G bodies fuse in vivo and are largely insensitive to 1,6-hexanediol, consistent with a hydrogel-like composition. Taken together, our results elucidate the biophysical nature of G bodies and demonstrate that RNA nucleates phase separation of the glycolysis machinery in response to hypoxic stress.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Glucólisis/fisiología , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Endorribonucleasas/metabolismo
7.
Cell Syst ; 6(6): 752-758.e1, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29953864

RESUMEN

The primary problem with the explosion of biomedical datasets is not the data, not computational resources, and not the required storage space, but the general lack of trained and skilled researchers to manipulate and analyze these data. Eliminating this problem requires development of comprehensive educational resources. Here we present a community-driven framework that enables modern, interactive teaching of data analytics in life sciences and facilitates the development of training materials. The key feature of our system is that it is not a static but a continuously improved collection of tutorials. By coupling tutorials with a web-based analysis framework, biomedical researchers can learn by performing computation themselves through a web browser without the need to install software or search for example datasets. Our ultimate goal is to expand the breadth of training materials to include fundamental statistical and data science topics and to precipitate a complete re-engineering of undergraduate and graduate curricula in life sciences. This project is accessible at https://training.galaxyproject.org.


Asunto(s)
Biología Computacional/educación , Biología Computacional/métodos , Investigadores/educación , Curriculum , Análisis de Datos , Educación a Distancia/métodos , Educación a Distancia/tendencias , Humanos , Programas Informáticos
8.
Cell Rep ; 20(4): 895-908, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28746874

RESUMEN

Glycolysis is upregulated under conditions such as hypoxia and high energy demand to promote cell proliferation, although the mechanism remains poorly understood. We find that hypoxia in Saccharomyces cerevisiae induces concentration of glycolytic enzymes, including the Pfk2p subunit of the rate-limiting phosphofructokinase, into a single, non-membrane-bound granule termed the "glycolytic body" or "G body." A yeast kinome screen identifies the yeast ortholog of AMP-activated protein kinase, Snf1p, as necessary for G-body formation. Many G-body components identified by proteomics are required for G-body integrity. Cells incapable of forming G bodies in hypoxia display abnormal cell division and produce inviable daughter cells. Conversely, cells with G bodies show increased glucose consumption and decreased levels of glycolytic intermediates. Importantly, G bodies form in human hepatocarcinoma cells in hypoxia. Together, our results suggest that G body formation is a conserved, adaptive response to increase glycolytic output during hypoxia or tumorigenesis.


Asunto(s)
Glucosa/metabolismo , Hipoxia/metabolismo , Cromatografía Liquida , Glucólisis/genética , Glucólisis/fisiología , Células Hep G2 , Humanos , Hipoxia/genética , Inmunoprecipitación , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Elife ; 62017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28650797

RESUMEN

The RNA binding protein, LARP1, has been proposed to function downstream of mTORC1 to regulate the translation of 5'TOP mRNAs such as those encoding ribosome proteins (RP). However, the roles of LARP1 in the translation of 5'TOP mRNAs are controversial and its regulatory roles in mTORC1-mediated translation remain unclear. Here we show that LARP1 is a direct substrate of mTORC1 and Akt/S6K1. Deep sequencing of LARP1-bound mRNAs reveal that non-phosphorylated LARP1 interacts with both 5' and 3'UTRs of RP mRNAs and inhibits their translation. Importantly, phosphorylation of LARP1 by mTORC1 and Akt/S6K1 dissociates it from 5'UTRs and relieves its inhibitory activity on RP mRNA translation. Concomitantly, phosphorylated LARP1 scaffolds mTORC1 on the 3'UTRs of translationally-competent RP mRNAs to facilitate mTORC1-dependent induction of translation initiation. Thus, in response to cellular mTOR activity, LARP1 serves as a phosphorylation-sensitive molecular switch for turning off or on RP mRNA translation and subsequent ribosome biogenesis.


Asunto(s)
Autoantígenos/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Quinasas S6 Ribosómicas 70-kDa , Antígeno SS-B
10.
Dev Cell ; 41(4): 408-423.e7, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28535375

RESUMEN

Germline-expressed endogenous small interfering RNAs (endo-siRNAs) transmit multigenerational epigenetic information to ensure fertility in subsequent generations. In Caenorhabditis elegans, nuclear RNAi ensures robust inheritance of endo-siRNAs and deposition of repressive H3K9me3 marks at target loci. How target silencing is maintained in subsequent generations is poorly understood. We discovered that morc-1 is essential for transgenerational fertility and acts as an effector of endo-siRNAs. Unexpectedly, morc-1 is dispensable for siRNA inheritance but is required for target silencing and maintenance of siRNA-dependent chromatin organization. A forward genetic screen identified mutations in met-1, which encodes an H3K36 methyltransferase, as potent suppressors of morc-1(-) and nuclear RNAi mutant phenotypes. Further analysis of nuclear RNAi and morc-1(-) mutants revealed a progressive, met-1-dependent enrichment of H3K36me3, suggesting that robust fertility requires repression of MET-1 activity at nuclear RNAi targets. Without MORC-1 and nuclear RNAi, MET-1-mediated encroachment of euchromatin leads to detrimental decondensation of germline chromatin and germline mortality.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Células Germinativas/metabolismo , Patrón de Herencia/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , Animales , Núcleo Celular/metabolismo , Genoma , Células Germinativas/citología , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilación , Modelos Biológicos , Mutación/genética , ARN Interferente Pequeño/metabolismo
11.
Noncoding RNA ; 4(1)2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29657298

RESUMEN

A novel antisense transcript was identified in the human telomerase reverse transcriptase (hTERT) promoter region, suggesting that the hTERT promoter is bidirectional. This transcript, named hTERT antisense promoter-associated (hTAPAS) RNA, is a 1.6 kb long non-coding RNA. hTAPAS transcription is initiated 167 nucleotides upstream of the hTERT transcription start site and is present in both the nucleus and the cytoplasm. Surprisingly, we observed that a large fraction of the hTERT polyadenylated RNA is localized in the nucleus, suggesting this might be an additional means of regulating the cellular abundance of hTERT protein. Both hTAPAS and hTERT are expressed in immortalized B-cells and human embryonic stem cells but are not detected in normal somatic cells. hTAPAS expression inversely correlates with hTERT expression in different types of cancer samples. Moreover, hTAPAS expression is not promoted by an hTERT promoter mutation (-124 C>T). Antisense-oligonucleotide mediated knockdown of hTAPAS results in an increase in hTERT expression. Conversely, ectopic overexpression of hTAPAS down regulates hTERT expression, suggesting a negative role in hTERT gene regulation. These observations provide insights into hTAPAS as a novel player that negatively regulates hTERT expression and may be involved in telomere length homeostasis.

12.
Methods Mol Biol ; 1361: 91-104, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26483018

RESUMEN

Protein-RNA interactions are integral components of posttranscriptional gene regulatory processes including mRNA processing and assembly of cellular architectures. Dysregulation of RNA-binding protein (RBP) expression or disruptions in RBP-RNA interactions underlie a variety of human pathologies and genetic diseases including cancer and neurodegenerative diseases (reviewed in (Cooper et al., Cell 136(4):777-793, 2009; Darnell, Cancer Res Treat 42(3):125-129, 2010; Lukong et al., Trends Genet 24 (8):416-425, 2008)). Recent studies have uncovered only a small proportion of the extensive RBP-RNA interactome in any organism (Baltz et al., Mol Cell 46(5):674-690, 2012; Castello et al., Cell 149(6):1393-1406, 2012; Freeberg et al., Genome Biol 14(2):R13, 2013; Hogan et al., PLoS Biol 6(10):e255, 2008; Mitchell et al., Nat Struct Mol Biol 20(1):127-133, 2013; Tsvetanova et al. PLoS One 5(9): pii: e12671, 2010; Schueler et al., Genome Biol 15(1):R15, 2014; Silverman et al., Genome Biol 15(1):R3, 2014). To expand our understanding of how RBP-RNA interactions govern RNA-related processes, we developed gPAR-CLIP-seq (global photoactivatable-ribonucleoside-enhanced cross-linking and precipitation followed by deep sequencing) for capturing and sequencing all regions of the Saccharomyces cerevisiae transcriptome bound by RBPs (Freeberg et al., Genome Biol 14(2):R13, 2013). This chapter describes a pipeline for bioinformatic analysis of gPAR-CLIP-seq data. The first half of this pipeline can be implemented by running locally installed programs or by running the programs using the Galaxy platform (Blankenberg et al., Curr Protoc Mol Biol. Chapter 19:Unit 19 10 11-21, 2010; Giardine et al., Genome Res 15 (10):1451-1455, 2005; Goecks et al., Genome Biol 11(8):R86, 2010). The second half of this pipeline can be implemented by user-generated code in any language using the pseudocode provided as a template.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Unión al ARN/genética , Sitios de Unión/genética , Células Eucariotas , Regulación de la Expresión Génica , Genoma , Humanos , ARN/genética , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/química , Saccharomyces cerevisiae/genética , Transcriptoma/genética
13.
Proc Natl Acad Sci U S A ; 112(52): E7213-22, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26669440

RESUMEN

MicroRNAs (miRNAs) play essential, conserved roles in diverse developmental processes through association with the miRNA-induced silencing complex (miRISC). Whereas fundamental insights into the mechanistic framework of miRNA biogenesis and target gene silencing have been established, posttranslational modifications that affect miRISC function are less well understood. Here we report that the conserved serine/threonine kinase, casein kinase II (CK2), promotes miRISC function in Caenorhabditis elegans. CK2 inactivation results in developmental defects that phenocopy loss of miRISC cofactors and enhances the loss of miRNA function in diverse cellular contexts. Whereas CK2 is dispensable for miRNA biogenesis and the stability of miRISC cofactors, it is required for efficient miRISC target mRNA binding and silencing. Importantly, we identify the conserved DEAD-box RNA helicase, CGH-1/DDX6, as a key CK2 substrate within miRISC and demonstrate phosphorylation of a conserved N-terminal serine is required for CGH-1 function in the miRNA pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Quinasa de la Caseína II/genética , MicroARNs/genética , Interferencia de ARN , ARN Nucleotidiltransferasas/genética , Complejo Silenciador Inducido por ARN/genética , Animales , Animales Modificados Genéticamente , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Quinasa de la Caseína II/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Unión Proteica , ARN Nucleotidiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Serina/genética , Serina/metabolismo , Transducción de Señal/genética
14.
Curr Biol ; 24(12): 1314-1322, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24881874

RESUMEN

BACKGROUND: Autophagy as a conserved lysosomal/vacuolar degradation and recycling pathway is important in normal development and physiology, and defects in this process are linked to many kinds of disease. Because too much or too little autophagy can be detrimental, the process must be tightly regulated both temporally and in magnitude. Two parameters that affect this regulation are the size and the number of autophagosomes; however, although we know that the amount of Atg8 affects the size of autophagosomes, the mechanism for regulating their number has not been elucidated. The transcriptional induction and repression of the autophagy-related (ATG) genes is one crucial aspect of autophagy regulation, but the transcriptional regulators that modulate autophagy are not well characterized. RESULTS: We detected increased expression levels of ATG genes, and elevated autophagy activity, in cells lacking the transcriptional regulator Pho23. Using transmission electron microscopy, we found that PHO23 null mutant cells contain significantly more autophagosomes than the wild-type. By RNA sequencing transcriptome profiling, we identified ATG9 as one of the key targets of Pho23, and our studies with strains expressing modulated levels of Atg9 show that the amount of this protein directly correlates with the frequency of autophagosome formation and the level of autophagy activity. CONCLUSIONS: Our results identified Pho23 as a master transcriptional repressor for autophagy that regulates the frequency of autophagosome formation through its negative regulation of ATG9.


Asunto(s)
Autofagia , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Fagosomas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas Relacionadas con la Autofagia , Perfilación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Proteínas Nucleares/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
PLoS Genet ; 9(3): e1003392, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516384

RESUMEN

Piwi-interacting RNAs (piRNAs) fulfill a critical, conserved role in defending the genome against foreign genetic elements. In many organisms, piRNAs appear to be derived from processing of a long, polycistronic RNA precursor. Here, we establish that each Caenorhabditis elegans piRNA represents a tiny, autonomous transcriptional unit. Remarkably, the minimal C. elegans piRNA cassette requires only a 21 nucleotide (nt) piRNA sequence and an ∼50 nt upstream motif with limited genomic context for expression. Combining computational analyses with a novel, in vivo transgenic system, we demonstrate that this upstream motif is necessary for independent expression of a germline-enriched, Piwi-dependent piRNA. We further show that a single nucleotide position within this motif directs differential germline enrichment. Accordingly, over 70% of C. elegans piRNAs are selectively expressed in male or female germline, and comparison of the genes they target suggests that these two populations have evolved independently. Together, our results indicate that C. elegans piRNA upstream motifs act as independent promoters to specify which sequences are expressed as piRNAs, how abundantly they are expressed, and in what germline. As the genome encodes well over 15,000 unique piRNA sequences, our study reveals that the number of transcriptional units encoding piRNAs rivals the number of mRNA coding genes in the C. elegans genome.


Asunto(s)
Células Germinativas/metabolismo , Motivos de Nucleótidos/genética , ARN Interferente Pequeño , Secuencias Reguladoras de Ácido Ribonucleico/genética , Animales , Caenorhabditis elegans/genética , Femenino , Regulación de la Expresión Génica , Genoma , Masculino , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
16.
Genome Biol ; 14(2): R13, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23409723

RESUMEN

BACKGROUND: Protein-RNA interactions are integral components of nearly every aspect of biology, including regulation of gene expression, assembly of cellular architectures, and pathogenesis of human diseases. However, studies in the past few decades have only uncovered a small fraction of the vast landscape of the protein-RNA interactome in any organism, and even less is known about the dynamics of protein-RNA interactions under changing developmental and environmental conditions. RESULTS: Here, we describe the gPAR-CLIP (global photoactivatable-ribonucleoside-enhanced crosslinking and immunopurification) approach for capturing regions of the untranslated, polyadenylated transcriptome bound by RNA-binding proteins (RBPs) in budding yeast. We report over 13,000 RBP crosslinking sites in untranslated regions (UTRs) covering 72% of protein-coding transcripts encoded in the genome, confirming 3' UTRs as major sites for RBP interaction. Comparative genomic analyses reveal that RBP crosslinking sites are highly conserved, and RNA folding predictions indicate that secondary structural elements are constrained by protein binding and may serve as generalizable modes of RNA recognition. Finally, 38% of 3' UTR crosslinking sites show changes in RBP occupancy upon glucose or nitrogen deprivation, with major impacts on metabolic pathways as well as mitochondrial and ribosomal gene expression. CONCLUSIONS: Our study offers an unprecedented view of the pervasiveness and dynamics of protein-RNA interactions in vivo.


Asunto(s)
ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Transcriptoma , Regiones no Traducidas 3' , Sitios de Unión , Reactivos de Enlaces Cruzados , Unión Proteica , Pliegue del ARN , ARN Mensajero/química , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Genome Biol ; 13(7): 164, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22818087

RESUMEN

Caenorhabditis elegans piRNAs promote genome surveillance by triggering siRNA-mediated silencing of nonself DNA in competition with licensing programs that support endogenous gene expression.


Asunto(s)
Caenorhabditis elegans/genética , Genoma de los Helmintos , ARN Interferente Pequeño/metabolismo , Animales , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Elementos Transponibles de ADN , Epigénesis Genética
18.
PLoS Genet ; 8(4): e1002617, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22548001

RESUMEN

Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2'-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family.


Asunto(s)
Proteínas Argonautas , Caenorhabditis elegans/genética , MicroARNs , ARN Interferente Pequeño , ARN Nuclear Pequeño/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Masculino , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA