Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
J Clin Oncol ; : JCO2300699, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701382

RESUMEN

PURPOSE: Both clear cell and papillary renal cell carcinomas (RCCs) overexpress kidney injury molecule-1 (KIM-1). We investigated whether plasma KIM-1 (pKIM-1) may be a useful risk stratification tool among patients with suspicious renal masses. METHODS: Prenephrectomy pKIM-1 was measured in two independent cohorts of patients with renal masses. Cohort 1, from the prospective K2 trial, included 162 patients found to have clear cell RCC (cases) and 162 patients with benign renal masses (controls). Cohort 2 included 247 patients with small (cT1a) renal masses from an academic biorepository, of whom 184 had RCC. We assessed the relationship between pKIM-1, surgical pathology, and clinical outcomes. RESULTS: In Cohort 1, pKIM-1 distinguished RCC versus benign masses with area under the receiver operating curve (AUC-ROC, 0.81 [95% CI, 0.76 to 0.86]). In Cohort 2 (cT1a only), pKIM-1 distinguished RCC versus benign masses (AUC-ROC, 0.74 [95% CI, 0.67 to 0.80]) and the addition of pKIM-1 to an established nomogram for predicting malignancy improved the model AUC-ROC (0.65 [95% CI, 0.57 to 0.74] v 0.78 [95% CI, 0.72 to 0.85]). A pKIM-1 cutpoint identified using Cohort 2 demonstrated sensitivity of 92.5% and specificity of 60% for identifying RCC in Cohort 1. In long-term follow-up of RCC cases (Cohort 1), higher prenephrectomy pKIM-1 was associated with worse metastasis-free survival (multivariable MFS hazard ratio [HR] 1.29 per unit increase in log pKIM-1, 95% CI, 1.10 to 1.53) and overall survival (multivariable OS HR 1.31 per unit increase in log pKIM-1, 95% CI, 1.10 to 1.54). In long-term follow-up of Cohort 2, no metastatic events occurred, consistent with the favorable prognosis of resected cT1a RCC. CONCLUSION: Among patients with renal masses, pKIM-1 is associated with malignant pathology, worse MFS, and risk of death. pKIM-1 may be useful for selecting patients with renal masses for intervention versus surveillance.

2.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260576

RESUMEN

Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in prostate cancer (PC) that develops resistance to androgen signaling inhibitor drugs, but the extent to which these variants drive AR activity, and whether they have novel functions or dependencies, remain to be determined. We generated a subline of VCaP PC cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ) and found that AR activity was independent of the full-length AR (ARfl), despite its continued high-level expression, and was instead driven by ARv7. The ARv7 cistrome and transcriptome in VCaP16 cells mirrored that of the ARfl in VCaP cells, although ARv7 chromatin binding was weaker, and strong ARv7 binding sites correlated with higher affinity ARfl binding sites across multiple models and clinical samples. Notably, although ARv7 expression in VCaP cells increased rapidly in response to ENZ, there was a long lag before it gained chromatin binding and transcriptional activity. This lag was associated with an increase in chromatin accessibility, with the AR and nuclear factor I (NFI) motifs being most enriched at these more accessible sites. Moreover, the transcriptional effects of combined NFIB and NFIX knockdown versus ARv7 knockdown were highly correlated. These findings indicate that ARv7 can drive the AR program, but that its activity is dependent on adaptations that increase chromatin accessibility to enhance its intrinsically weak chromatin binding.

4.
Nat Commun ; 14(1): 8084, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057321

RESUMEN

We introduce Promoter-Enhancer-Guided Interaction Networks (PENGUIN), a method for studying protein-protein interaction (PPI) networks within enhancer-promoter interactions. PENGUIN integrates H3K27ac-HiChIP data with tissue-specific PPIs to define enhancer-promoter PPI networks (EPINs). We validated PENGUIN using cancer (LNCaP) and benign (LHSAR) prostate cell lines. Our analysis detected EPIN clusters enriched with the architectural protein CTCF, a regulator of enhancer-promoter interactions. CTCF presence was coupled with the prevalence of prostate cancer (PrCa) single nucleotide polymorphisms (SNPs) within the same EPIN clusters, suggesting functional implications in PrCa. Within the EPINs displaying enrichments in both CTCF and PrCa SNPs, we also show enrichment in oncogenes. We substantiated our identified SNPs through CRISPR/Cas9 knockout and RNAi screens experiments. Here we show that PENGUIN provides insights into the intricate interplay between enhancer-promoter interactions and PPI networks, which are crucial for identifying key genes and potential intervention targets. A dedicated server is available at https://penguin.life.bsc.es/ .


Asunto(s)
Neoplasias de la Próstata , Spheniscidae , Masculino , Animales , Humanos , Spheniscidae/genética , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/genética , Proteínas/genética
5.
Nat Med ; 29(11): 2737-2741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865722

RESUMEN

Although circulating tumor DNA (ctDNA) assays are increasingly used to inform clinical decisions in cancer care, they have limited ability to identify the transcriptional programs that govern cancer phenotypes and their dynamic changes during the course of disease. To address these limitations, we developed a method for comprehensive epigenomic profiling of cancer from 1 ml of patient plasma. Using an immunoprecipitation-based approach targeting histone modifications and DNA methylation, we measured 1,268 epigenomic profiles in plasma from 433 individuals with one of 15 cancers. Our assay provided a robust proxy for transcriptional activity, allowing us to infer the expression levels of diagnostic markers and drug targets, measure the activity of therapeutically targetable transcription factors and detect epigenetic mechanisms of resistance. This proof-of-concept study in advanced cancers shows how plasma epigenomic profiling has the potential to unlock clinically actionable information that is currently accessible only via direct tissue sampling.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Humanos , Epigenómica , Biomarcadores de Tumor/genética , Neoplasias/genética , ADN Tumoral Circulante/genética , Biopsia Líquida/métodos , Mutación
7.
Nat Commun ; 14(1): 5118, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612286

RESUMEN

To date, single-nucleotide polymorphisms (SNPs) have been the most intensively investigated class of polymorphisms in genome wide associations studies (GWAS), however, other classes such as insertion-deletion or multiple nucleotide length polymorphism (MNLPs) may also confer disease risk. Multiple reports have shown that the 5p15.33 prostate cancer risk region is a particularly strong expression quantitative trait locus (eQTL) for Iroquois Homeobox 4 (IRX4) transcripts. Here, we demonstrate using epigenome and genome editing that a biallelic (21 and 47 base pairs (bp)) MNLP is the causal variant regulating IRX4 transcript levels. In LNCaP prostate cancer cells (homozygous for the 21 bp short allele), a single copy knock-in of the 47 bp long allele potently alters the chromatin state, enabling de novo functional binding of the androgen receptor (AR) associated with increased chromatin accessibility, Histone 3 lysine 27 acetylation (H3K27ac), and ~3-fold upregulation of IRX4 expression. We further show that an MNLP is amongst the strongest candidate susceptibility variants at two additional prostate cancer risk loci. We estimated that at least 5% of prostate cancer risk loci could be explained by functional non-SNP causal variants, which may have broader implications for other cancers GWAS. More generally, our results underscore the importance of investigating other classes of inherited variation as causal mediators of human traits.


Asunto(s)
Neoplasias , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Cromatina/genética , Acetilación , Alelos , Nucleótidos
8.
Eur Urol ; 84(5): 455-460, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37271632

RESUMEN

Grade group 1 (GG1) primary prostate cancers with a pathologic Gleason score of 6 are considered indolent and generally not associated with fatal outcomes, so treatment is not indicated for most cases. These low-grade cancers have an overall negligible risk of locoregional progression and metastasis to distant organs, which is why there is an ongoing debate about whether these lesions should be reclassified as "noncancerous". However, the underlying molecular activity of key disease drivers, such as the androgen receptor (AR), have thus far not been thoroughly characterized in low-grade tumors. Therefore, we set out to delineate the AR chromatin-binding landscape in low-grade GG1 prostate cancers to gain insights into whether these AR-driven programs are actually tumor-specific or are normal prostate epithelium-like. These analyses showed that GG1 tumors do not harbor a distinct AR cistrome and, similar to higher-grade cancers, AR preferentially binds to tumor-defining cis-regulatory elements. Furthermore, the enhancer activity of these regions and the expression of their respective target genes were not significantly different in GG1 tumors. From an epigenetic perspective, this finding supports the cancer designation currently given to these low-grade tumors and clearly distinguishes them from noncancerous benign tissue. PATIENT SUMMARY: We characterized the molecular activity of the androgen receptor protein, which drives prostate cancer disease, in low-grade tumors. Our results show that these tumors are true cancers and are clearly separate from benign prostate tissue despite their low clinical aggressiveness.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Clasificación del Tumor , Neoplasias de la Próstata/patología , Próstata/patología
9.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090516

RESUMEN

The transcription factors MECOM, PAX8, SOX17 and WT1 are candidate master regulators of high-grade serous 'ovarian' cancer (HGSC), yet their cooperative role in the hypothesized tissue of origin, the fallopian tube secretory epithelium (FTSEC) is unknown. We generated 26 epigenome (CUT&TAG, CUT&RUN, ATAC-seq and HiC) data sets and 24 profiles of RNA-seq transcription factor knock-down followed by RNA sequencing in FTSEC and HGSC models to define binding sites and gene sets regulated by these factors in cis and trans. This revealed that MECOM, PAX8, SOX17 and WT1 are lineage-enriched, super-enhancer associated master regulators whose cooperative DNA-binding patterns and target genes are re-wired during tumor development. All four TFs were indispensable for HGSC clonogenicity and survival but only depletion of PAX8 and WT1 impaired FTSEC cell survival. These four TFs were pharmacologically inhibited by transcriptional inhibitors only in HGSCs but not in FTSECs. Collectively, our data highlights that tumor-specific epigenetic remodeling is tightly related to MECOM, PAX8, SOX17 and WT1 activity and these transcription factors are targetable in a tumor-specific manner through transcriptional inhibitors.

10.
medRxiv ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36865297

RESUMEN

Androgen Receptor (AR) signaling inhibitors, including enzalutamide, are treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC), but resistance inevitably develops. Using metastatic samples from a prospective phase II clinical trial, we epigenetically profiled enhancer/promoter activities with H3K27ac chromatin immunoprecipitation followed by sequencing, before and after AR-targeted therapy. We identified a distinct subset of H3K27ac-differentially marked regions that associated with treatment responsiveness. These data were successfully validated in mCRPC patient-derived xenograft models (PDX). In silico analyses revealed HDAC3 as a critical factor that can drive resistance to hormonal interventions, which we validated in vitro . Using cell lines and mCRPC PDX tumors in vitro , we identified drug-drug synergy between enzalutamide and the pan-HDAC inhibitor vorinostat, providing therapeutic proof-of-concept. These findings demonstrate rationale for new therapeutic strategies using a combination of AR and HDAC inhibitors to improve patient outcome in advanced stages of mCRPC.

11.
bioRxiv ; 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36993558

RESUMEN

The extent to which clinical and genomic characteristics associate with prostate cancer clonal architecture, tumor evolution, and therapeutic response remains unclear. Here, we reconstructed the clonal architecture and evolutionary trajectories of 845 prostate cancer tumors with harmonized clinical and molecular data. We observed that tumors from patients who self-reported as Black had more linear and monoclonal architectures, despite these men having higher rates of biochemical recurrence. This finding contrasts with prior observations relating polyclonal architecture to adverse clinical outcomes. Additionally, we utilized a novel approach to mutational signature analysis that leverages clonal architecture to uncover additional cases of homologous recombination and mismatch repair deficiency in primary and metastatic tumors and link the origin of mutational signatures to specific subclones. Broadly, prostate cancer clonal architecture analysis reveals novel biological insights that may be immediately clinically actionable and provide multiple opportunities for subsequent investigation. Statement of significance: Tumors from patients who self-reported as Black demonstrate linear and monoclonal evolutionary trajectories yet experience higher rates of biochemical recurrence. In addition, analysis of clonal and subclonal mutational signatures identifies additional tumors with potentially actionable alterations such as deficiencies in mismatch repair and homologous recombination.

12.
Nat Commun ; 14(1): 346, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681680

RESUMEN

While the mutational and transcriptional landscapes of renal cell carcinoma (RCC) are well-known, the epigenome is poorly understood. We characterize the epigenome of clear cell (ccRCC), papillary (pRCC), and chromophobe RCC (chRCC) by using ChIP-seq, ATAC-Seq, RNA-seq, and SNP arrays. We integrate 153 individual data sets from 42 patients and nominate 50 histology-specific master transcription factors (MTF) to define RCC histologic subtypes, including EPAS1 and ETS-1 in ccRCC, HNF1B in pRCC, and FOXI1 in chRCC. We confirm histology-specific MTFs via immunohistochemistry including a ccRCC-specific TF, BHLHE41. FOXI1 overexpression with knock-down of EPAS1 in the 786-O ccRCC cell line induces transcriptional upregulation of chRCC-specific genes, TFCP2L1, ATP6V0D2, KIT, and INSRR, implicating FOXI1 as a MTF for chRCC. Integrating RCC GWAS risk SNPs with H3K27ac ChIP-seq and ATAC-seq data reveals that risk-variants are significantly enriched in allelically-imbalanced peaks. This epigenomic atlas in primary human samples provides a resource for future investigation.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Epigenómica , Factores de Transcripción/genética , Oncogenes , Factores de Transcripción Forkhead/genética
13.
Nucleic Acids Res ; 51(3): e18, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36546757

RESUMEN

The vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and the number of variants tested per loci. Using this strategy, we interrogated known prostate cancer (PCa) risk-associated loci and demonstrated that 35% of them harbor SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.


Asunto(s)
Estudio de Asociación del Genoma Completo , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Masculino , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética
14.
Cancer Discov ; 13(3): 632-653, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399432

RESUMEN

Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcriptome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with diagnostic advantages for precision oncology. SIGNIFICANCE: This study provides insights into the dynamics of nucleosome positioning and gene regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA alterations with important implications for molecular classification and precision oncology. This article is highlighted in the In This Issue feature, p. 517.


Asunto(s)
ADN Tumoral Circulante , Neoplasias de la Próstata , Masculino , Humanos , ADN Tumoral Circulante/genética , Nucleosomas/genética , Medicina de Precisión , Neoplasias de la Próstata/patología , Regulación Neoplásica de la Expresión Génica , Fenotipo
15.
Nat Med ; 28(12): 2592-2600, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36526722

RESUMEN

Treatment with immune checkpoint blockade (ICB) frequently triggers immune-related adverse events (irAEs), causing considerable morbidity. In 214 patients receiving ICB for melanoma, we observed increased severe irAE risk in minor allele carriers of rs16906115, intronic to IL7. We found that rs16906115 forms a B cell-specific expression quantitative trait locus (eQTL) to IL7 in patients. Patients carrying the risk allele demonstrate increased pre-treatment B cell IL7 expression, which independently associates with irAE risk, divergent immunoglobulin expression and more B cell receptor mutations. Consistent with the role of IL-7 in T cell development, risk allele carriers have distinct ICB-induced CD8+ T cell subset responses, skewing of T cell clonality and greater proportional repertoire occupancy by large clones. Finally, analysis of TCGA data suggests that risk allele carriers independently have improved melanoma survival. These observations highlight key roles for B cells and IL-7 in both ICB response and toxicity and clinical outcomes in melanoma.


Asunto(s)
Interleucina-7 , Melanoma , Humanos , Interleucina-7/genética , Interleucina-7/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Melanoma/tratamiento farmacológico , Melanoma/genética , Linfocitos T CD8-positivos , Variación Genética
16.
Nat Med ; 28(12): 2584-2591, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36526723

RESUMEN

Immune checkpoint inhibitors (ICIs) have yielded remarkable responses but often lead to immune-related adverse events (irAEs). Although germline causes for irAEs have been hypothesized, no individual variant associated with developing irAEs has been identified. We carried out a genome-wide association study of 1,751 patients on ICIs across 12 cancer types. We investigated two irAE phenotypes: (1) high-grade (3-5) and (2) all-grade events. We identified 3 genome-wide significant associations (P < 5 × 10-8) in the discovery cohort associated with all-grade irAEs: rs16906115 near IL7 (combined P = 3.6 × 10-11; hazard ratio (HR) = 2.1); rs75824728 near IL22RA1 (combined P = 3.5 × 10-8; HR = 1.8); and rs113861051 on 4p15 (combined P = 1.2 × 10-8, HR = 2.0); rs16906115 was replicated in 3 independent studies. The association near IL7 colocalized with the gain of a new cryptic exon for IL7, a critical regulator of lymphocyte homeostasis. Patients carrying the IL7 germline variant exhibited significantly increased lymphocyte stability after ICI initiation, which was itself predictive of downstream irAEs and improved survival.


Asunto(s)
Estudio de Asociación del Genoma Completo , Inhibidores de Puntos de Control Inmunológico , Interleucina-7 , Cognición , Células Germinativas , Estudios Retrospectivos
17.
Nat Commun ; 13(1): 7367, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450752

RESUMEN

Androgen receptor (AR) drives prostate cancer (PCa) development and progression. AR chromatin binding profiles are highly plastic and form recurrent programmatic changes that differentiate disease stages, subtypes and patient outcomes. While prior studies focused on concordance between patient subgroups, inter-tumor heterogeneity of AR enhancer selectivity remains unexplored. Here we report high levels of AR chromatin binding heterogeneity in human primary prostate tumors, that overlap with heterogeneity observed in healthy prostate epithelium. Such heterogeneity has functional consequences, as somatic mutations converge on commonly-shared AR sites in primary over metastatic tissues. In contrast, less-frequently shared AR sites associate strongly with AR-driven gene expression, while such heterogeneous AR enhancer usage also distinguishes patients' outcome. These findings indicate that epigenetic heterogeneity in primary disease is directly informative for risk of biochemical relapse. Cumulatively, our results illustrate a high level of AR enhancer heterogeneity in primary PCa driving differential expression and clinical impact.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Neoplasias de la Próstata/genética , Próstata , Cromatina
18.
JCO Precis Oncol ; 6: e2200329, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36103646

RESUMEN

PURPOSE: Guidelines recommend somatic and germline testing for men with advanced prostate cancer (PCa). Barriers to widespread implementation result in underutilization of germline testing. Somatic testing alone risks missing pathogenic germline variants (PGVs). We sought to determine whether the addition of germline testing to tumor-only sequencing improves detection of PGVs in men with advanced PCa. Secondarily, we sought to define the added value of combining somatic and germline testing to optimize detection of clinically actionable alterations. PATIENTS AND METHODS: We analyzed results of independent germline testing and tumor-only sequencing from 100 men with advanced PCa from a prospective clinical trial (ClinicalTrials.gov identifier: NCT03328091). The primary outcome was the proportion of PGVs not reported with tumor-only sequencing. The secondary outcome was the association of locus-specific loss of heterozygosity for PGVs in homologous recombination genes with clinical-genomic features. RESULTS: In the 100 men who underwent germline testing and tumor-only sequencing, 24 PGVs were identified, 17 of which were clinically actionable, in 23 patients. Tumor-only sequencing failed to report four (17%) of the PGVs. One additional PGV (4.2%) had variant allele frequency on tumor-sequencing below the threshold for follow-up germline testing. When integrating tumor-only sequencing with germling testing results, 33% of patients harbored clinically actionable alterations. Rates of locus-specific loss of heterozygosity were higher for BRCA2 PGVs in castration-resistant PCa than PGVs in other homologous recombination genes in hormone-sensitive PCa (P = .029). CONCLUSION: Tumor-only sequencing failed to report more than 20% of PGVs in men with advanced PCa. These findings strongly support guideline recommendations for universal germline and somatic testing in this population. Combining tumor and germline sequencing doubled the chance of detecting a clinically actionable alteration.


Asunto(s)
Mutación de Línea Germinal , Neoplasias de la Próstata , Células Germinativas/patología , Mutación de Línea Germinal/genética , Humanos , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico , Análisis de Secuencia
19.
Nat Genet ; 54(9): 1364-1375, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071171

RESUMEN

Many genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease. In prostate cancer, CWAS identified regulatory elements and androgen receptor-binding sites that explained the association at 52 of 98 known prostate cancer risk loci and discovered 17 additional risk loci. CWAS implicated key developmental transcription factors in prostate cancer risk that are overlooked by eQTL-based approaches due to context-dependent gene regulation. We experimentally validated associations and demonstrated the extensibility of CWAS to additional epigenomic datasets and phenotypes, including response to prostate cancer treatment. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting transcriptional regulation.


Asunto(s)
Cromatina , Neoplasias de la Próstata , Cromatina/genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/genética , Sitios de Carácter Cuantitativo/genética
20.
Cancer Res ; 82(20): 3673-3686, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35950920

RESUMEN

Most invasive lobular breast cancers (ILC) are of the luminal A subtype and are strongly hormone receptor-positive. Yet, ILC is relatively resistant to tamoxifen and associated with inferior long-term outcomes compared with invasive ductal cancers (IDC). In this study, we sought to gain mechanistic insights into these clinical findings that are not explained by the genetic landscape of ILC and to identify strategies to improve patient outcomes. A comprehensive analysis of the epigenome of ILC in preclinical models and clinical samples showed that, compared with IDC, ILC harbored a distinct chromatin state linked to gained recruitment of FOXA1, a lineage-defining pioneer transcription factor. This resulted in an ILC-unique FOXA1-estrogen receptor (ER) axis that promoted the transcription of genes associated with tumor progression and poor outcomes. The ILC-unique FOXA1-ER axis led to retained ER chromatin binding after tamoxifen treatment, which facilitated tamoxifen resistance while remaining strongly dependent on ER signaling. Mechanistically, gained FOXA1 binding was associated with the autoinduction of FOXA1 in ILC through an ILC-unique FOXA1 binding site. Targeted silencing of this regulatory site resulted in the disruption of the feed-forward loop and growth inhibition in ILC. In summary, ILC is characterized by a unique chromatin state and FOXA1-ER axis that is associated with tumor progression, offering a novel mechanism of tamoxifen resistance. These results underscore the importance of conducting clinical trials dedicated to patients with ILC in order to optimize treatments in this breast cancer subtype. SIGNIFICANCE: A unique FOXA1-ER axis in invasive lobular breast cancer promotes disease progression and tamoxifen resistance, highlighting a potential therapeutic avenue for clinical investigations dedicated to this disease. See related commentary by Blawski and Toska, p. 3668.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/tratamiento farmacológico , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Cromatina/genética , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Pronóstico , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA