Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 14(12): e5018, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948260

RESUMEN

Microglia, the brain's primary resident immune cell, exists in various phenotypic states depending on intrinsic and extrinsic signaling. Distinguishing between these phenotypes can offer valuable biological insights into neurodevelopmental and neurodegenerative processes. Recent advances in single-cell transcriptomic profiling have allowed for increased granularity and better separation of distinct microglial states. While techniques such as immunofluorescence and single-cell RNA sequencing (scRNA-seq) are available to differentiate microglial phenotypes and functions, these methods present notable limitations, including challenging quantification methods, high cost, and advanced analytical techniques. This protocol addresses these limitations by presenting an optimized cell preparation procedure that prevents ex vivo activation and a flow cytometry panel to distinguish four distinct microglial states from murine brain tissue. Following cell preparation, fluorescent antibodies were applied to label 1) homeostatic, 2) disease-associated (DAM), 3) interferon response (IRM), and 4) lipid-droplet accumulating (LDAM) microglia, based on gene markers identified in previous scRNA-Seq studies. Stained cells were analyzed by flow cytometry to assess phenotypic distribution as a function of age and sex. A key advantage of this procedure is its adaptability, allowing the panel provided to be enhanced using additional markers with an appropriate cell analyzer (i.e., Cytek Aurora 5 laser spectral flow cytometer) and interrogating different brain regions or disease models. Additionally, this protocol does not require microglial cell sorting, resulting in a relatively quick and straightforward experiment. Ultimately, this protocol can compare the distribution of microglial phenotypic states between various experimental groups, such as disease state or age, with a lower cost and higher throughput than scRNA-seq. Key features • Analysis of microglial phenotypes from murine brain without the need for cell sorting, imaging, or scRNA-seq. • This protocol can distinguish between homeostatic, disease-associated (DAM), lipid-droplet accumulating (LDAM), and interferon response (IRM) microglia from any murine brain region and/or disease model of interest. • This protocol can be modified to incorporate additional markers of interest or dyes when using a cell analyzer capable of multiple color detections.

2.
J Neuroinflammation ; 21(1): 150, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840206

RESUMEN

Microglia, the brain's resident macrophages, maintain brain homeostasis and respond to injury and infection. During aging they undergo functional changes, but the underlying mechanisms and their contributions to neuroprotection versus neurodegeneration are unclear. Previous studies suggested that microglia are sex dimorphic, so we compared microglial aging in mice of both sexes. RNA-sequencing of hippocampal microglia revealed more aging-associated changes in female microglia than male microglia, and more sex differences in old microglia than young microglia. Pathway analyses and subsequent validation assays revealed a stronger AKT-mTOR-HIF1α-driven shift to glycolysis among old female microglia and indicated that C3a production and detection was elevated in old microglia, especially in females. Recombinant C3a induced AKT-mTOR-HIF1α signaling and increased the glycolytic and phagocytic activity of young microglia. Single cell analyses attributed the aging-associated sex dimorphism to more abundant disease-associated microglia (DAM) in old female mice than old male mice, and evaluation of an Alzheimer's Disease mouse model revealed that the metabolic and complement changes are also apparent in the context of neurodegenerative disease and are strongest in the neuroprotective DAM2 subset. Collectively, our data implicate autocrine C3a-C3aR signaling in metabolic reprogramming of microglia to neuroprotective DAM during aging, especially in females, and also in Alzheimer's Disease.


Asunto(s)
Envejecimiento , Microglía , Caracteres Sexuales , Animales , Microglía/metabolismo , Femenino , Ratones , Envejecimiento/metabolismo , Envejecimiento/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Transducción de Señal/fisiología
3.
Neurobiol Aging ; 140: 41-59, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38723422

RESUMEN

Aging is the main risk factor for age-related macular degeneration (AMD), a retinal neurodegenerative disease that leads to irreversible blindness, particularly in people over 60 years old. Retinal pigmented epithelium (RPE) atrophy is an AMD hallmark. Genome-wide chromatin accessibility, DNA methylation, and gene expression studies of AMD and control RPE demonstrate epigenomic/transcriptomic changes occur during AMD onset and progression. However, mechanisms by which molecular alterations of normal aging impair RPE function and contribute to AMD pathogenesis are unclear. Here, we specifically interrogate the RPE translatome with advanced age and across sexes in a novel RPE reporter mouse model. We find differential age- and sex- associated transcript expression with overrepresentation of pathways related to inflammation in the RPE. Concordant with impaired RPE function, the phenotypic changes in the aged translatome suggest that aged RPE becomes immunologically active, in both males and females, with some sex-specific signatures, which supports the need for sex representation for in vivo studies.


Asunto(s)
Envejecimiento , Degeneración Macular , Epitelio Pigmentado de la Retina , Caracteres Sexuales , Animales , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Femenino , Masculino , Envejecimiento/genética , Envejecimiento/fisiología , Envejecimiento/patología , Degeneración Macular/genética , Degeneración Macular/patología , Degeneración Macular/etiología , Transcriptoma , Modelos Animales de Enfermedad , Expresión Génica , Inflamación , Ratones , Ratones Endogámicos C57BL
4.
Nat Aging ; 4(1): 145-162, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200272

RESUMEN

Ovarian aging leads to diminished fertility, dysregulated endocrine signaling and increased chronic disease burden. These effects begin to emerge long before follicular exhaustion. Female humans experience a sharp decline in fertility around 35 years of age, which corresponds to declines in oocyte quality. Despite a growing body of work, the field lacks a comprehensive cellular map of the transcriptomic changes in the aging mouse ovary to identify early drivers of ovarian decline. To fill this gap we performed single-cell RNA sequencing on ovarian tissue from young (3-month-old) and reproductively aged (9-month-old) mice. Our analysis revealed a doubling of immune cells in the aged ovary, with lymphocyte proportions increasing the most, which was confirmed by flow cytometry. We also found an age-related downregulation of collagenase pathways in stromal fibroblasts, which corresponds to rises in ovarian fibrosis. Follicular cells displayed stress-response, immunogenic and fibrotic signaling pathway inductions with aging. This report provides critical insights into mechanisms responsible for ovarian aging phenotypes. The data can be explored interactively via a Shiny-based web application.


Asunto(s)
Envejecimiento , Ovario , Humanos , Femenino , Ratones , Animales , Ovario/metabolismo , Envejecimiento/genética , Oocitos/metabolismo , Fertilidad/genética , Transducción de Señal
5.
iScience ; 26(12): 108413, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38058312

RESUMEN

Temporally controlling Cre recombination through tamoxifen (Tam) induction has many advantages for biomedical research. Most studies report early post-natal/juvenile (<2 m.o.) Tam induction, but age-related neurodegeneration and aging studies can require Cre induction in older mice (>12 m.o.). While anecdotally reported as problematic, there are no published comparisons of Tam-mediated Cre induction at early and late ages. Here, microglial-specific Cx3cr1creERT2 mice were crossed to a floxed NuTRAP reporter to compare Cre induction at early (3-6 m.o.) and late (20 m.o.) ages. Specificity and efficiency of microglial labeling at 21-22 m.o. were identical in mice induced with Tam at early and late ages. Age-related microglial translatomic changes were also similar regardless of Tam induction age. Each Cre and flox mouse line should be independently validated, however, these findings demonstrate that Tam-mediated Cre induction can be performed even into older mouse ages and should be generalizable to other inducible Cre models.

6.
Epigenetics Chromatin ; 16(1): 45, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953264

RESUMEN

BACKGROUND: Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation, DNA modifications in particular, of gene expression between neurons and glia. RESULTS: After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT-whole genome oxidative bisulfite sequencing (WGoxBS) to assess the neuronal translatome and epigenome in the hippocampus of young mice (4 months old). WGoxBS findings were validated with enzymatic methyl-Seq (EM-Seq) and nanopore sequencing. Comparing neuronal data to microglial and astrocytic data from NuTRAP models, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, rather than proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of gene body mCG and a positive relationship between distal promoter and gene body hmCG with gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. CONCLUSIONS: Neurons, astrocytes, and microglia demonstrate different genome-wide levels of mCG, hmCG, and mCH that are reproducible across analytical methods. However, modification-gene expression relationships are conserved across cell types. Enrichment of differential modifications across cell types in gene bodies and distal regulatory elements, but not proximal promoters, highlights epigenomic patterning in these regions as potentially greater determinants of cell identity. These findings also demonstrate the importance of differentiating between mC and hmC in neuroepigenomic analyses, as up to 30% of what is conventionally interpreted as mCG can be hmCG, which often has a different relationship to gene expression than mCG.


Asunto(s)
Astrocitos , Microglía , Ratones , Animales , Metilación de ADN , ADN , Neuronas
7.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014232

RESUMEN

Alzheimer's disease (AD) patients exhibit neuropsychiatric symptoms that extend beyond classical cognitive deficits, suggesting involvement of subcortical areas. Here, we investigated the role of midbrain dopamine (DA) neurons in AD using the amyloid + tau-driven 3xTg-AD mouse model. We found deficits in reward-based operant learning in AD mice, suggesting possible VTA DA neuron dysregulation. Physiological assessment revealed hyperexcitability and disrupted firing in DA neurons caused by reduced activity of small-conductance calcium-activated potassium (SK) channels. RNA sequencing from contents of single patch-clamped DA neurons (Patch-seq) identified up-regulation of the SK channel modulator casein kinase 2 (CK2). Pharmacological inhibition of CK2 restored SK channel activity and normal firing patterns in 3xTg-AD mice. These findings shed light on a complex interplay between neuropsychiatric symptoms and subcortical circuits in AD, paving the way for novel treatment strategies.

8.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37781585

RESUMEN

Temporally controlling cre recombination through tamoxifen (Tam) induction has many advantages for biomedical research. Most studies report Tam induction at early post-natal/juvenile (<2 m.o.) mouse ages, but age-related neurodegeneration and aging studies can require cre induction in older mice (>12 m.o.). While anecdotally reported as problematic, there are no published comparisons of Tam mediated cre induction at early and late ages. Here, microglial-specific Cx3cr1 creERT 2 mice were crossed to a floxed NuTRAP reporter to compare cre induction at early (3-6 m.o.) and late (20 m.o.) ages. Specificity and efficiency of microglial labeling at 21-22 m.o. were identical in mice induced with Tam at 3-6 m.o. or 20 m.o. of age. Age-related microglial translatomic changes were also similar regardless of Tam induction age. Each cre and flox mouse line should be validated independently, however, these findings demonstrate that Tam-mediated cre induction can be performed even into older mouse ages.

9.
Geroscience ; 45(6): 3241-3256, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792157

RESUMEN

To study the impact of necroptosis-induced chronic inflammation on age-related diseases and aging, two knockin mouse models (Ripk3-KI and Mlkl-KI) were generated that overexpress two genes involved in necroptosis (Ripk3 or Mlkl) when crossed to Cre transgenic mice. Crossing Ripk3-KI or Mlkl-KI mice to albumin-Cre transgenic mice produced hepatocyte specific hRipk3-KI or hMlkl-KI mice, which express the two transgenes only in the liver. Ripk3 and Mlkl proteins were overexpressed 10- and fourfold, respectively, in the livers of the hRipk3-KI or hMlkl-KI mice. Treating young (2-month) hRipk3-KI or hMlkl-KI mice with carbon tetrachloride (CCl4), a chemical inducer of oxidative stress, resulted in increased necroptosis (Mlkl-oligomers) and inflammation in the liver compared to control mice receiving CCl4. Mlkl-oligomerization also was significantly increased in old (18-month) hRipk3-KI and hMlkl-KI mice compared to old control (Cre negative, Ripk3-KI and Mlkl-KI) mice. The increase in necroptosis was associated with an increase in inflammation, e.g., inflammatory cytokines (TNFα, IL-6) and macrophage markers (F4/80, CD68). Importantly, steatosis (triglycerides) and fibrosis (e.g., picrosirius red staining, hydroxyproline levels, and transcripts for TGFß, Col1α1, and Col3α1) that increase with age were significantly higher in the livers of the old hRipk3-KI or hMlkl-KI mice compared to old control mice. In addition, markers of cellular senescence were significantly increased in the livers of the old hRipk3-KI and hMlkl-KI mice. Thus, the first mouse models have been developed that allow researchers to study the impact of inducing necroptosis in specific cells/tissues on chronic inflammation in aging and age-related diseases.


Asunto(s)
Necroptosis , Proteínas Quinasas , Ratones , Animales , Proteínas Quinasas/genética , Inflamación , Envejecimiento , Ratones Transgénicos
10.
J Neuroinflammation ; 20(1): 188, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587511

RESUMEN

BACKGROUND: Microglia, the brain's principal immune cells, have been implicated in the pathogenesis of Alzheimer's disease (AD), a condition shown to affect more females than males. Although sex differences in microglial function and transcriptomic programming have been described across development and in disease models of AD, no studies have comprehensively identified the sex divergences that emerge in the aging mouse hippocampus. Further, existing models of AD generally develop pathology (amyloid plaques and tau tangles) early in life and fail to recapitulate the aged brain environment associated with late-onset AD. Here, we examined and compared transcriptomic and translatomic sex effects in young and old murine hippocampal microglia. METHODS: Hippocampal tissue from C57BL6/N and microglial NuTRAP mice of both sexes were collected at young (5-6 month-old [mo]) and old (22-25 mo) ages. Cell sorting and affinity purification techniques were used to isolate the microglial transcriptome and translatome for RNA-sequencing and differential expression analyses. Flow cytometry, qPCR, and imaging approaches were used to confirm the transcriptomic and translatomic findings. RESULTS: There were marginal sex differences identified in the young hippocampal microglia, with most differentially expressed genes (DEGs) restricted to the sex chromosomes. Both sex chromosomally and autosomally encoded sex differences emerged with aging. These sex DEGs identified at old age were primarily female-biased and enriched in senescent and disease-associated microglial signatures. Normalized gene expression values can be accessed through a searchable web interface ( https://neuroepigenomics.omrf.org/ ). Pathway analyses identified upstream regulators induced to a greater extent in females than in males, including inflammatory mediators IFNG, TNF, and IL1B, as well as AD-risk genes TREM2 and APP. CONCLUSIONS: These data suggest that female microglia adopt disease-associated and senescent phenotypes in the aging mouse hippocampus, even in the absence of disease pathology, to a greater extent than males. This sexually divergent microglial phenotype may explain the difference in susceptibility and disease progression in the case of AD pathology. Future studies will need to explore sex differences in microglial heterogeneity in response to AD pathology and determine how sex-specific regulators (i.e., sex chromosomal or hormonal) elicit these sex effects.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Femenino , Masculino , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedades Neuroinflamatorias , Caracteres Sexuales , Perfilación de la Expresión Génica
12.
Rejuvenation Res ; 26(5): 171-179, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37551981

RESUMEN

Experimental approaches such as Heterochronic Plasma Transfer (HPT) provide insights into the aging process and help identify the factors that impact aging, with the aim of developing anti-aging therapies. HPT involves the transfer of plasma from an animal of one age to an animal of a different age and highlights the effects of the systemic environment on aging. Despite its importance as an aging research tool, HPT is not without limitations and HPT experiments across various studies differ in key experimental designs considerations, presenting a challenge in obtaining comparable outcomes. In this review, we examine the caveats and experimental design considerations of HPT as a research tool. We provide insights into plasma preparation procedures, route of administration, dosing regimen, and appropriate controls to assist investigators in achieving their experimental goals.


Asunto(s)
Parabiosis , Proyectos de Investigación , Animales , Envejecimiento , Rejuvenecimiento
13.
Geroscience ; 45(5): 3019-3043, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37393197

RESUMEN

Major histocompatibility complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses, but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here, we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating ribosome affinity purification-qPCR analysis of 3-6- and 18-22-month-old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m, H2-D1, H2-K1, H2-M3, H2-Q6, and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I-binding leukocyte immunoglobulin-like (Lilrs) and paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell -autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A, suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Ratones , Ratas , Animales , Microglía/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Complejo Mayor de Histocompatibilidad , Envejecimiento/fisiología , Encéfalo/metabolismo
14.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333391

RESUMEN

Background: Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. This is especially true as for DNA modifications where most data are derived from bisulfite sequencing that cannot differentiate between DNA methylation and hydroxymethylation. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation of gene expression between neurons and glia. Results: After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT whole genome oxidative bisulfite sequencing to assess the neuronal translatome and epigenome in the hippocampus of young mice (3 months old). These data were then compared to microglial and astrocytic data from NuTRAP models. When comparing the different cell types, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, with limited differences occurring within proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of mCG with gene expression within the gene body while a positive relationship between distal promoter and gene body hmCG and gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. Conclusions: In this study, we identified differential usage of DNA modifications across CNS cell types, and assessed the relationship between DNA modifications and gene expression in neurons and glia. Despite having different global levels, the general modification-gene expression relationship was conserved across cell types. The enrichment of differential modifications in gene bodies and distal regulatory elements, but not proximal promoters, across cell types highlights epigenomic patterning in these regions as potentially greater determinants of cell identity.

15.
Mol Cancer Res ; 21(9): 933-946, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37204757

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the etiologies that contribute to hepatocellular carcinoma (HCC), and chronic inflammation is one of the proposed mediators of HCC. Because necroptosis is a cell death pathway that induces inflammation, we tested whether necroptosis-induced inflammation contributes to the progression of NAFLD to HCC in a mouse model of diet-induced HCC. Male and female wild-type (WT) mice and mouse models where necroptosis is blocked (Ripk3-/- or Mlkl-/- mice) were fed either a control diet, choline-deficient low-fat diet or choline-deficient high-fat diet. Blocking necroptosis reduced markers of inflammation [proinflammatory cytokines (TNFα, IL6, and IL1ß), F4/80+ve macrophages, CCR2+ve infiltrating monocytes], inflammation-associated oncogenic pathways (JNK, PD-L1/PD-1, ß-catenin), and HCC in male mice. We demonstrate that hepatic necroptosis promotes recruitment and activation of liver macrophages leading to chronic inflammation, which in turn trigger oncogenic pathways leading to the progression of NAFLD to HCC in male mice. Whereas in female mice, blocking necroptosis reduced HCC independent of inflammation. Our data show a sex-specific difference in the development of inflammation, fibrosis, and HCC in WT mice. However, blocking necroptosis reduced HCC in both males and females without altering liver fibrosis. Thus, our study suggests that necroptosis is a valid therapeutic target for NAFLD-mediated HCC. IMPLICATIONS: Necroptosis is a major contributor to hepatic inflammation that drives the progression of NAFLD to HCC and therefore represents a valid target for NAFLD-mediated HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Masculino , Femenino , Animales , Ratones , Carcinoma Hepatocelular/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Incidencia , Neoplasias Hepáticas/patología , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Inflamación/patología , Dieta Alta en Grasa/efectos adversos , Colina/efectos adversos , Colina/metabolismo , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
16.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37162983

RESUMEN

Ovarian aging leads to diminished fertility, dysregulated endocrine signaling, and increased chronic disease burden. These effects begin to emerge long before follicular exhaustion. Around 35 years old, women experience a sharp decline in fertility, corresponding to declines in oocyte quality. Despite a growing body of work, the field lacks a comprehensive cellular map of the transcriptomic changes in the aging ovary to identify early drivers of ovarian decline. To fill this gap, we performed single-cell RNA sequencing on ovarian tissue from young (3-month-old) and reproductively aged (9-month-old) mice. Our analysis revealed a doubling of immune cells in the aged ovary, with lymphocyte proportions increasing the most, which was confirmed by flow cytometry. We also found an age-related downregulation of collagenase pathways in stromal fibroblasts, which corresponds to rises in ovarian fibrosis. Follicular cells displayed stress response, immunogenic, and fibrotic signaling pathway inductions with aging. This report raises provides critical insights into mechanisms responsible for ovarian aging phenotypes.

17.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912526

RESUMEN

Assessing cell-type-specific epigenomic and transcriptomic changes are key to understanding ovarian aging. To this end, the optimization of the translating ribosome affinity purification (TRAP) method and the isolation of nuclei tagged in specific cell types (INTACT) method was performed for the subsequent paired interrogation of the cell-specific ovarian transcriptome and epigenome using a novel transgenic NuTRAP mouse model. The expression of the NuTRAP allele is under the control of a floxed STOP cassette and can be targeted to specific ovarian cell types using promoter-specific Cre lines. Since recent studies have implicated ovarian stromal cells in driving premature aging phenotypes, the NuTRAP expression system was targeted to stromal cells using a Cyp17a1-Cre driver. The induction of the NuTRAP construct was specific to ovarian stromal fibroblasts, and sufficient DNA and RNA for sequencing studies were obtained from a single ovary. The NuTRAP model and methods presented here can be used to study any ovarian cell type with an available Cre line.


Asunto(s)
Epigenoma , Transcriptoma , Femenino , Ratones , Animales , Ratones Transgénicos , Perfilación de la Expresión Génica/métodos , Ovario
18.
bioRxiv ; 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-36945372

RESUMEN

Major Histocompatibility Complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating Ribosome Affinity Purification-qPCR analysis of 3-6 and 18-22 month old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m , H2-D1 , H2-K1 , H2-M3 , H2-Q6 , and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I binding Leukocyte Immunoglobulin-like (Lilrs) and Paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell-autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A , suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.

19.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36945656

RESUMEN

Background: Microglia, the brain's principal immune cells, have been implicated in the pathogenesis of Alzheimer's disease (AD), a condition shown to affect more females than males. Although sex differences in microglial function and transcriptomic programming have been described across development and in disease models of AD, no studies have comprehensively identified the sex divergences that emerge in the aging mouse hippocampus. Further, existing models of AD generally develop pathology (amyloid plaques and tau tangles) early in life and fail to recapitulate the aged brain environment associated with late-onset AD. Here, we examined and compared transcriptomic and translatomic sex effects in young and old murine hippocampal microglia. Methods: Hippocampal tissue from C57BL6/N and microglial NuTRAP mice of both sexes were collected at young (5-6 month-old [mo]) and old (22-25 mo) ages. Cell sorting and affinity purification techniques were used to isolate the microglial transcriptome and translatome for RNA-sequencing and differential expression analyses. Flow cytometry, qPCR, and imaging approaches were used to confirm the transcriptomic and translatomic findings. Results: There were marginal sex differences identified in the young hippocampal microglia, with most differentially expressed genes (DEGs) restricted to the sex chromosomes. Both sex chromosomally-and autosomally-encoded sex differences emerged with aging. These sex DEGs identified at old age were primarily female-biased and enriched in senescent and disease-associated microglial signatures. Normalized gene expression values can be accessed through a searchable web interface ( https://neuroepigenomics.omrf.org/ ). Pathway analyses identified upstream regulators induced to a greater extent in females than in males, including inflammatory mediators IFNG, TNF, and IL1B, as well as AD-risk genes TREM2 and APP. Conclusions: These data suggest that female microglia adopt disease-associated and senescent phenotypes in the aging mouse hippocampus, even in the absence of disease pathology, to a greater extent than males. This sexually divergent microglial phenotype may explain the difference in susceptibility and disease progression in the case of AD pathology. Future studies will need to explore sex differences in microglial heterogeneity in response to AD pathology and determine how sex-specific regulators (i.e., sex chromosomal or hormonal) elicit these sex effects.

20.
Geroscience ; 45(4): 2337-2349, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36897526

RESUMEN

17α-estradiol has recently been shown to extend healthspan and lifespan in male mice through multiple mechanisms. These benefits occur in the absence of significant feminization or deleterious effects on reproductive function, which makes 17α-estradiol a candidate for translation into humans. However, human dosing paradigms for the treatment of aging and chronic disease are yet to be established. Therefore, the goals of the current studies were to assess tolerability of 17α-estradiol treatment, in addition to evaluating metabolic and endocrine responses in male rhesus macaque monkeys during a relatively short treatment period. We found that our dosing regimens (0.30 and 0.20 mg/kg/day) were tolerable as evidenced by a lack of GI distress, changes in blood chemistry or complete blood counts, and unaffected vital signs. We also found that the higher dose did elicit mild benefits on metabolic parameters including body mass, adiposity, and glycosylated hemoglobin. However, both of our 17α-estradiol trial doses elicited significant feminization to include testicular atrophy, increased circulating estrogens, and suppressed circulating androgens and gonadotropins. We suspect that the observed level of feminization results from a saturation of the endogenous conjugation enzymes, thereby promoting a greater concentration of unconjugated 17α-estradiol in serum, which has more biological activity. We also surmise that the elevated level of unconjugated 17α-estradiol was subjected to a greater degree of isomerization to 17ß-estradiol, which is aligned with the sevenfold increase in serum 17ß-estradiol in 17α-estradiol treated animals in our first trial. Future studies in monkeys, and certainly humans, would likely benefit from the development and implementation of 17α-estradiol transdermal patches, which are commonly prescribed in humans and would circumvent potential issues with bolus dosing effects.


Asunto(s)
Estradiol , Feminización , Humanos , Masculino , Ratones , Animales , Macaca mulatta , Envejecimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...