Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transl Cancer Res ; 13(5): 2535-2543, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881922

RESUMEN

Despite the promise of concurrent radiotherapy (RT) and immunotherapy in head and neck cancer (HNC), multiple randomized trials of this combination have had disappointing results. To evaluate potential immunologic mechanisms of RT resistance, we compared pre-treatment HNCs that developed RT resistance to a matched cohort that achieved curative status. Gene set enrichment analysis demonstrated that a pre-treatment pro-immunogenic tumor microenvironment (TME), including type II interferon [interferon gamma (IFNγ)] and tumor necrosis factor alpha (TNFα) signaling, predicted cure while type I interferon [interferon alpha (IFNα)] enrichment was associated with an immunosuppressive TME found in tumors that went on to recur. We then used immune deconvolution of RNA sequencing datasets to evaluate immunologic cell subset enrichment. This identified M2 macrophage signaling associated with type I IFN pathway expression in RT-recurrent disease. To further dissect mechanism, we then evaluated differential gene expression between pre-treatment and RT-resistant HNCs from sampled from the same patients at the same anatomical location in the oral cavity. Here, recurrent samples exhibited upregulation of type I IFN-stimulated genes (ISGs) including members of the IFN-induced protein with tetratricopeptide repeats (IFIT) and IFN-induced transmembrane (IFITM) gene families. While several ISGs were upregulated in each recurrent cancer, IFIT2 was significantly upregulated in all recurrent tumors when compared with the matched pre-RT specimens. Based on these observations, we hypothesized sustained type I IFN signaling through ISGs, such as IFIT2, may suppress the intra-tumoral immune response thereby promoting radiation resistance.

3.
Transl Oncol ; 42: 101899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320395

RESUMEN

BACKGROUND: Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) remains a treatment-resistance disease with limited response to immunotherapy. While T cells in HNSCC are known to display phenotypic dysfunction, whether they retain rescuable functional capacity and tumor-killing capability remains unclear. METHODS: To investigate the functionality and tumor-specificity of tumor-infiltrating lymphocytes (TILs) across HNSCCs, malignant cell lines and TILs were derived from 31 HPV-negative HNSCCs at the time of standard surgical resection. T cell functional capacity was evaluated through ex vivo expansion, immunophenotyping, and IsoLight single-cell proteomics. Tumor-specificity was investigated through both bulk and single-cell tumor-TIL co-culture. RESULTS: TILs could be successfully generated from 24 patients (77%), including both previously untreated and radiation recurrent HNSCCs. We demonstrate that across HNSCCs, TILs express multiple exhaustion markers but maintain a predominantly effector memory phenotype. After ex vivo expansion, TILs retain immunogenic functionality even from radiation-resistant, exhausted, and T cell-depleted disease. We further demonstrate tumor-specificity of T cells across HNSCC patients through patient-matched malignant cell-T cell co-culture. Finally, we use optofluidic technology to establish an autologous single tumor cell-single T cell co-culture platform for HNSCC. Cells derived from three HNSCC patients underwent single-cell co-culture which enabled identification and visualization of individual tumor-killing TILs in real-time in all patients. CONCLUSIONS: These studies show that cancer-specific T cells exist across HNSCC patients with rescuable immunogenicity and can be identified on a single-cell level. These data lay the foundation for development of patient-specific T cell immunotherapies in HNSCC.

4.
Mol Imaging Biol ; 26(1): 124-137, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37530966

RESUMEN

PURPOSE: Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2nd window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney. PROCEDURES: Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3rd chromosome inherited from Brown Norway, SS.BN3 (Dll4-low) rats at ages 11-12 weeks were used to demonstrate the impact of reduced Dll4 expression on long-term vascular integrity, renal function, and survival following high-dose 13 Gy partial body irradiation at 42- and 90 days post-radiation. 2nd window dynamic NIR fluorescence imaging with ICG was analyzed with physiology-based pharmacokinetic modeling and confirmed with assays of endothelial Dll4 expression to assess the role of endogenous Dll4 expression on radiation injury protection. RESULTS: We show that SS.BN3 (Dll4-low) rats are relatively protected from vascular permeability disruption compared to the SS (Dll4-high) strain. We further demonstrated that SS.BN3 (Dll4-low) rats have reduced radiation induced loss of CD31+ vascular endothelial cells, and increased Dll4 vascular expression is correlated with vascular dysfunction. CONCLUSIONS: Together, these data suggest Dll4 plays a key role in pathogenesis of radiation-induced vascular injury to the lung and kidney.


Asunto(s)
Proteínas de la Membrana , Traumatismos por Radiación , Lesiones del Sistema Vascular , Ratas , Femenino , Animales , Células Endoteliales/metabolismo , Lesiones del Sistema Vascular/diagnóstico por imagen , Lesiones del Sistema Vascular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
5.
Oral Oncol ; 144: 106487, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423200

RESUMEN

OBJECTIVES: Human Papillomavirus (HPV)-negative head and neck cancer (HNC) is an aggressive malignancy with a poor prognosis. To improve outcomes, we developed a novel liposomal targeting system embedded with 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), a chlorin-based photosensitizer. Upon exposure to 660 nm light, HPPH phototriggering generates reactive oxygen species. The objective of this study was to evaluate biodistribution and test efficacy of HPPH-liposomal therapy in a patient-derived xenograft (PDX) model of chemoradioresistant HNC. MATERIALS AND METHODS: PDX models were developed from two surgically resected HNCs (P033 and P038) recurrent after chemoradiation. HPPH-liposomes were created including trace amounts of DiR (Ex/Em 785/830 nm), a near infrared lipid probe. Liposomes were injected via tail vein into PDX models. Biodistribution was assessed at serial timepoints in tumor and end-organs through in vivo DiR fluorescence. To evaluate efficacy, tumors were treated with a cw-diode 660 nm laser (90 mW/cm2, 5 min). This experimental arm was compared to appropriate controls, including HPPH-liposomes without laser or vehicle with laser alone. RESULTS: HPPH-liposomes delivered via tail vein exhibited selective tumor penetration, with a peak concentration at 4 h. No systemic toxicity was observed. Treatment with combined HPPH-liposomes and laser resulted in improved tumor control relative to either vehicle or laser alone. Histologically, this manifested as both increased cellular necrosis and decreased Ki-67 staining in the tumors treated with combined therapy. CONCLUSIONS: These data demonstrate tumor-specific anti-neoplastic efficacy of HPPH-liposomal treatment for HNC. Importantly, this platform can be leveraged in future studies for targeted delivery of immunotherapies which can be packaged within HPPH-liposomes.


Asunto(s)
Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Liposomas , Distribución Tisular , Infecciones por Papillomavirus/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
6.
Front Physiol ; 14: 1191237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275232

RESUMEN

Introduction: In experimental animal models, biological sex-differences in the manifestation and severity of normal tissue radiation injury have been well-documented. Previously we demonstrated male and female rats have differential and highly reproducible responses to high-dose partial body irradiation (PBI) with male rats having greater susceptibility to both gastrointestinal acute radiation syndrome (GI-ARS) and radiation pneumonitis than female rats. Methods: In the current study, we have investigated whether differential expression of the renin-angiotensin system (RAS) enzymes angiotensin converting enzyme (ACE) and ACE2 contribute to the observed sex-related differences in radiation response. Results: During the period of symptomatic pneumonitis, the relative ratio of ACE to ACE2 (ACE/ACE2) protein in the whole lung was significantly increased by radiation in male rats alone. Systemic treatment with small molecule ACE2 agonist diminazene aceturate (DIZE) increased lung ACE2 activity and reduced morbidity during radiation pneumonitis in both sexes. Notably DIZE treatment also abrogated morbidity in male rats during GI-ARS. We then evaluated the contribution of the irradiated bone marrow (BM) compartment on lung immune cell infiltration and ACE imbalance during pneumonitis. Transplantation of bone marrow from irradiated donors increased both ACE-expressing myeloid cell infiltration and immune ACE activity in the lung during pneumonitis compared to non-irradiated donors. Discussion: Together, these data demonstrate radiation induces a sex-dependent imbalance in the renin-angiotensin system enzymes ACE and ACE2. Additionally, these data suggest a role for ACE-expressing myeloid cells in the pathogenesis of radiation pneumonitis. Finally, the observed sex-differences underscore the need for consideration of sex as a biological variable in the development of medical countermeasures for radiation exposure.

7.
Int J Radiat Biol ; 99(7): 1096-1108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36971580

RESUMEN

PURPOSE: Radiation therapy remains part of the standard of care for breast, lung, and esophageal cancers. While radiotherapy improves local control and survival, radiation-induced heart dysfunction is a common side effect of thoracic radiotherapy. Cardiovascular dysfunction can also result from non-therapeutic total body radiation exposures. Numerous studies have evaluated the relationship between radiation dose to the heart and cardiotoxicity, but relatively little is known about whether there are differences based on biological sex in radiation-induced heart dysfunction (RIHD). MATERIALS AND METHODS: We evaluated whether male and female inbred Dahl SS rats display differences in RIHD following delivery of 24 Gy in a single fraction to the whole heart using a 1.5 cm beam size (collimater). We also compared the 2.0 cm vs. 1.5 cm collimator in males. Pleural and pericardial effusions and normalized heart weights were measured, and echocardiograms were performed. RESULTS: Female SS rats displayed more severe RIHD relative to age-matched SS male rats. Normalized heart weight was significantly increased in females, but not in males. A total of 94% (15/16) of males and 55% (6/11) of females survived 5 months after completion of radiotherapy (p < .01). Among surviving rats, 100% of females and 14% of males developed moderate-to-severe pericardial effusions at 5 months. Females demonstrated increased pleural effusions, with the mean normalized pleural fluid volume for females and males being 56.6 mL/kg ± 12.1 and 10.96 mL/kg ± 6.4 in males (p = .001), respectively. Echocardiogram findings showed evidence of heart failure, which was more pronounced in females. Because age-matched female rats have smaller lungs, a higher percentage of the total lung was treated with radiation in females than males using the same beam size. After using a larger 2 cm beam in males which results in higher lung exposure, there was not a significant difference between males and females in terms of the development of moderate-to-severe pericardial effusions or pleural effusions. Treatment of males with a 2 cm beam resulted in comparable increases in LV mass and reductions in stroke volume to female rats treated with a 1.5 cm beam. CONCLUSION: Together, these results illustrate that there are differences in radiation-induced cardiotoxicity between male and female SS rats and add to the data that lung radiation doses, in addition to other factors, may play an important role in cardiac dysfunction following heart radiation exposure. These factors may be important to factor into future mitigation studies of radiation-induced cardiotoxicity.


Asunto(s)
Corazón , Radiografía Torácica , Animales , Ratas , Masculino , Femenino , Radiografía Torácica/efectos adversos , Corazón/efectos de la radiación , Cardiotoxicidad , Derrame Pericárdico , Derrame Pleural , Ratas Endogámicas Dahl
8.
Int J Radiat Oncol Biol Phys ; 116(5): 1163-1174, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36792018

RESUMEN

PURPOSE: Victims of acute radiation exposure are susceptible to hematopoietic toxicity due to bone marrow damage and loss of mature blood elements. Here, we evaluated cord blood-derived endothelial progenitor cells (CB-EPCs) as a potential cellular therapy for mitigation of hematologic acute radiation syndrome. CB-EPCs express endothelial cell markers and maintain their growth characteristics beyond 10+ passages without diminishing their doubling capacity. Further, CB-EPCs can be cryopreserved in vapor-phase liquid nitrogen and easily recovered for propagation, making them an attractive nonimmunogenic cellular therapy for off-the-shelf use. Importantly, we show CB-EPCs have the capacity to potently expand adult human bone marrow hematopoietic progenitor cells both in vitro and in vivo. METHODS AND MATERIALS: To demonstrate the role of CB-EPCs in promoting in vivo human immune reconstitution after irradiation, we employed a novel humanized mouse model established by transplant of CD34+ bone marrow cells from 9 unique adult organ donors into immunocompromised NSG-SGM3 mice. The response of the humanized immune system to ionizing irradiation was then tested by exposure to 1 Gy followed by subcutaneous treatment of CB-EPCs, Food and Drug Administration-approved growth factor pegfilgrastim (0.3 mg/kg), or saline. RESULTS: At day 7, total human bone marrow was decreased by 80% in irradiated controls. However, treatment with either growth factor pegfilgrastim or CB-EPCs increased recovery of total human bone marrow by 2.5-fold compared with saline. Notably, CB-EPCs also increased recovery of both human CD34+ progenitors by 5-fold and colony-forming capacity by 3-fold versus saline. Additionally, CB-EPCs promoted recovery of endogenous bone marrow endothelial cells as observed by both increased vessel area and length compared with saline. CONCLUSIONS: These findings indicate the feasibility of using humanized mice engrafted with adult bone marrow for radiation research and the development of CB-EPCs as an off-the-shelf cellular therapy for mitigation of hematologic acute radiation syndrome.


Asunto(s)
Síndrome de Radiación Aguda , Células Progenitoras Endoteliales , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Ratones , Animales , Médula Ósea , Células Madre Hematopoyéticas/fisiología , Sangre Fetal/metabolismo , Síndrome de Radiación Aguda/metabolismo , Células de la Médula Ósea , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos
9.
Int J Radiat Biol ; 99(7): 1130-1138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36688956

RESUMEN

PURPOSE: A mass casualty disaster involving radiological or nuclear agents continues to be a public health concern which requires consideration of both acute and late tissue toxicities in exposed victims. With the advent of advanced treatment options for the mitigation of hematological injuries, there are likely to be survivors of total body irradiation (TBI) exposures as high as 8-10 Gy. These survivors are at risk for a range of delayed multi-organ morbidities including progressive renal failure. MATERIAL AND METHODS: Here, we established the WAG/RijCmcr rat as an effective model for the evaluation of medical countermeasures (MCM) for acute hematologic radiation syndrome (H-ARS). The LD50/30 dose for adult and pediatric WAG/RijCmcr rats was determined for both sexes. We then confirmed the FDA-approved MCM pegfilgrastim (peg-GCSF, Neulasta®) mitigates H-ARS in adult male and female rats. Finally, we evaluated survival and renal dysfunction up to 300 d post-TBI in male and female adult rats. RESULTS: In the WAG/RijCmcr rat model, 87.5% and 100% of adult rats succumb to lethal hematopoietic acute radiation syndrome (H-ARS) at TBI doses of 8 and 8.5 Gy, respectively. A single dose of the hematopoietic growth factor peg-GCSF administered at 24 h post-TBI improved survival during H-ARS. Peg-GCSF treatment improved 30 d survival from 12.5% to 83% at 8 Gy and from 0% to 63% at 8.5 Gy. We then followed survivors of H-ARS through day 300. Rats exposed to TBI doses greater than 8 Gy had a 26% reduction in survival over days 30-300 compared to rats exposed to 7.75 Gy TBI. Concurrent with the reduction in long-term survival, a dose-dependent impairment of renal function as assessed by blood urea nitrogen (BUN) and urine protein to urine creatinine ratio (UP:UC) was observed. CONCLUSION: Together, these data show survivors of H-ARS are at risk for the development of delayed renal toxicity and emphasize the need for the development of medical countermeasures for delayed renal injury.


Asunto(s)
Síndrome de Radiación Aguda , Masculino , Ratas , Femenino , Animales , Humanos , Relación Dosis-Respuesta en la Radiación , Modelos Animales de Enfermedad , Riñón/fisiología , Sobrevivientes , Irradiación Corporal Total/efectos adversos
10.
Radiat Res ; 198(4): 325-335, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35904437

RESUMEN

The renin-angiotensin system (RAS) is known to regulate the pathogenesis of radiation-induced injury as inhibitors of the RAS enzyme angiotensin converting enzyme (ACE) have established function as mitigators of multi-organ radiation injury. To further elucidate the role of RAS signaling during both the acute and delayed syndromes of radiation exposure, we have evaluated whether pharmacologic modulation of alternate RAS enzyme angiotensin converting enzyme 2 (ACE2) reduces the pathogenesis of multi-organ radiation-induced injuries. Here, we demonstrate pharmacologic ACE2 activation with the small molecule ACE2 agonist diminazene aceturate (DIZE) improves survival in rat models of both hematologic acute radiation syndrome (H-ARS) and multi-organ delayed effects of acute radiation exposure (DEARE). In the H-ARS model, DIZE treatment increased 30-day survival by 30% compared to vehicle control rats after a LD50/30 total-body irradiation (TBI) dose of 7.75 Gy. In the mitigation of DEARE, ACE2 agonism with DIZE increased median survival by 30 days, reduced breathing rate, and reduced blood urea nitrogen (BUN) levels compared to control rats after partial-body irradiation (PBI) of 13.5 Gy. DIZE treatment was observed to have systemic effects which may explain the multi-organ benefits observed including mobilization of hematopoietic progenitors to the circulation and a reduction in plasma TGF-beta levels. These data suggest the ACE2 enzyme plays a critical role in the RAS-mediated pathogenesis of radiation injury and may be a potential therapeutic target for the development of medical countermeasures for acute radiation exposure.


Asunto(s)
Peptidil-Dipeptidasa A , Traumatismos por Radiación , Enzima Convertidora de Angiotensina 2 , Animales , Diminazeno/análogos & derivados , Peptidil-Dipeptidasa A/metabolismo , Ratas , Factor de Crecimiento Transformador beta
11.
Head Neck ; 44(6): 1324-1334, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35261119

RESUMEN

BACKGROUND: Despite the importance of immune response and environmental stress on head and neck cancer (HNC) outcomes, no current pre-clinical stress model includes a humanized immune system. METHODS: We investigated the effects of chronic stress induced by social isolation on tumor growth and human immune response in subcutaneous HNC tumors grown in NSG-SGM3 mice engrafted with a human immune system. RESULTS: Tumor growth (p < 0.0001) and lung metastases (p = 0.035) were increased in socially isolated versus control animals. Chronic stress increased intra-tumoral CD4+ T-cell infiltrate (p = 0.005), plasma SDF-1 (p < 0.0001) expression, and led to tumor cell dedifferentiation toward a cancer stem cell phenotype (CD44+ /ALDHhigh , p = 0.025). CONCLUSIONS: Chronic stress induced immunophenotypic changes, increased tumor growth, and metastasis in HNC in a murine model with a humanized immune system. This model system may provide further insight into the immunologic and oncologic impact of chronic stress on patients with HNC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Animales , Modelos Animales de Enfermedad , Neoplasias de Cabeza y Cuello/patología , Humanos , Ratones , Células Madre Neoplásicas/metabolismo
12.
Int J Radiat Oncol Biol Phys ; 113(1): 177-191, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35093482

RESUMEN

PURPOSE: Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiation therapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS: ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats after either high dose fractionated radiation therapy to the right lung (5 fractions × 9 Gy) or a single dose of 13.5 Gy partial body irradiation. Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat partial body irradiation model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid. In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS: In both the partial body irradiation and fractionated radiation therapy models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (P = .0004). Lisinopril abrogated radiation-induced increases in bronchoalveolar lavage fluid monocyte chemoattractant protein 1 (chemokine ligand 2) and MIP-1a cytokine levels (P < .0001). Treatment with lisinopril reduced both ACE expression (P = .006) and frequency of CD45+ CD11b+ lung myeloid cells (P = .004). In vitro, radiation injury acutely increased ACE activity (P = .045) and reactive oxygen species (ROS) generation (P = .004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Radiation-induced ROS generation was blocked by pharmacologic inhibition of either NADPH oxidase 2 (P = .012) or the type 1 angiotensin receptor (P = .013). CONCLUSIONS: These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of proinflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/type 1 angiotensin receptor pathway in immune cells and promotes generation of ROS via NADPH oxidase 2.


Asunto(s)
Traumatismos por Radiación , Neumonitis por Radiación , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Humanos , Lisinopril/farmacología , Lisinopril/uso terapéutico , Pulmón/efectos de la radiación , Monocitos , NADPH Oxidasa 2/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/uso terapéutico , Traumatismos por Radiación/patología , Neumonitis por Radiación/tratamiento farmacológico , Neumonitis por Radiación/etiología , Neumonitis por Radiación/prevención & control , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/uso terapéutico
13.
PLoS One ; 16(10): e0259042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34695155

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family which has been extensively studied for its roles in neural development, long-term memory, brain injury, and neurodegenerative diseases. BDNF signaling through tropomyosin receptor kinase B (TrkB) stimulates neuronal cell survival. For this reason, small molecule TrkB agonists are under pre-clinical develoment for the treatment of a range of neurodegenerative diseases and injuries. Our laboratory recently reported BDNF is secreted by pro-regenerative endothelial progenitor cells (EPCs) which support hematopoietic reconstitution following total body irradiation (TBI). Here we report BDNF-TrkB signaling plays a novel regenerative role in bone marrow and thymic regeneration following radiation injury. Exogenous administration of BDNF or TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following myelosuppressive radiation injury promoted faster recovery of mature blood cells and hematopoietic stem cells capable of multi-lineage reconstitution. BDNF promotes hematopoietic regeneration via activation of PDGFRα+ bone marrow mesenchymal stem cells (MSCs) which increase secretion of hematopoietic cytokines interleukin 6 (IL-6) and leukemia inhibitory factor (LIF) in response to TrkB activation. These data suggest pharmacologic activation of the BDNF pathway with either BDNF or 7,8-DHF may be beneficial for treatment of radiation or chemotherapy induced myelosuppression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Flavonas/farmacología , Reconstitución Inmune , Células Madre Mesenquimatosas/efectos de los fármacos , Traumatismos por Radiación/metabolismo , Transducción de Señal/efectos de los fármacos , Timo/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Interleucina-6/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Receptor trkB/metabolismo , Timo/metabolismo
14.
JACC CardioOncol ; 3(1): 113-130, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33912843

RESUMEN

BACKGROUND: Over half of all cancer patients receive radiation therapy (RT). However, radiation exposure to the heart can cause cardiotoxicity. Nevertheless, there is a paucity of data on RT-induced cardiac damage, with limited understanding of safe regional RT doses, early detection, prevention and management. A common initial feature of cardiotoxicity is asymptomatic dysfunction, which if left untreated may progress to heart failure. The current paradigm for cardiotoxicity detection and management relies primarily upon assessment of ejection fraction (EF). However, cardiac injury can occur without a clear change in EF. OBJECTIVES: To identify magnetic resonance imaging (MRI) markers of early RT-induced cardiac dysfunction. METHODS: We investigated the effect of RT on global and regional cardiac function and myocardial T1/T2 values at two timepoints post-RT using cardiac MRI in a rat model of localized cardiac RT. Rats who received image-guided whole-heart radiation of 24Gy were compared to sham-treated rats. RESULTS: The rats maintained normal global cardiac function post-RT. However, a deterioration in strain was particularly notable at 10-weeks post RT, and changes in circumferential strain were larger than changes in radial or longitudinal strain. Compared to sham, circumferential strain changes occurred at the basal, mid-ventricular and apical levels (p<0.05 for all at both 8-weeks and 10-weeks post-RT), most of the radial strain changes occurred at the mid-ventricular (p=0.044 at 8-weeks post-RT) and basal (p=0.018 at 10-weeks post-RT) levels, and most of the longitudinal strain changes occurred at the apical (p=0.002 at 8-weeks post-RT) and basal (p=0.035 at 10-weeks post-RT) levels. Regionally, lateral myocardial segments showed the greatest worsening in strain measurements, and histologic changes supported these findings. Despite worsened myocardial strain post-RT, myocardial tissue displacement measures were maintained, or even increased. T1/T2 measurements showed small non-significant changes post-RT compared to values in non-irradiated rats. CONCLUSIONS: Our findings suggest MRI regional myocardial strain is a sensitive imaging biomarker for detecting RT-induced subclinical cardiac dysfunction prior to compromise of global cardiac function.

15.
Magn Reson Imaging ; 73: 130-137, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32866598

RESUMEN

Cardiac MRI of small animal models of cancer radiation therapy (RT) is a valuable tool for studying the effect of RT on the heart. However, standard cardiac MRI exams require long scanning times, which is challenging for sick animals that may not survive extended periods of imaging under anesthesia. The purpose of this study is to develop an optimized, fast MRI exam for comprehensive cardiac functional imaging of small-animal models of cancer RT. Ten adult female rats (2 non-irradiated and 8 irradiated) were scanned using the developed exam. Optimal imaging parameters were determined, which minimized scanning time while ensuring measurement accuracy and avoiding imaging artifacts. This optimized, fast MRI exam lasted for 30 min, which was tolerated by all animals. EF was normal in all imaged rats, although it was significantly increased in the irradiated rats, which also showed ventricular hypertrophy. However, myocardial strain was significantly reduced in the irradiated rats. In conclusion, a fast MRI exam has been developed for comprehensive cardiac functional imaging of rats in 30 min, with optimized imaging parameters to ensure accurate measurements and tolerance by irradiated rats. The generated strain measurements provide an early marker of regional cardiac dysfunction before global function is affected.


Asunto(s)
Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioterapia Guiada por Imagen , Animales , Modelos Animales de Enfermedad , Femenino , Ratas
16.
Cancers (Basel) ; 12(4)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316187

RESUMEN

While radiation therapy (RT) can improve cancer outcomes, it can lead to radiation-induced heart dysfunction (RIHD) in patients with thoracic tumors. This study examines the role of adaptive immune cells in RIHD. In Salt-Sensitive (SS) rats, image-guided whole-heart RT increased cardiac T-cell infiltration. We analyzed the functional requirement for these cells in RIHD using a genetic model of T- and B-cell deficiency (interleukin-2 receptor gamma chain knockout (IL2RG-/-)) and observed a complex role for these cells. Surprisingly, while IL2RG deficiency conferred protection from cardiac hypertrophy, it worsened heart function via echocardiogram three months after a large single RT dose, including increased end-systolic volume (ESV) and reduced ejection fraction (EF) and fractional shortening (FS) (p < 0.05). Fractionated RT, however, did not yield similarly increased injury. Our results indicate that T cells are not uniformly required for RIHD in this model, nor do they account for our previously reported differences in cardiac RT sensitivity between SS and SS.BN3 rats. The increasing use of immunotherapies in conjunction with traditional cancer treatments demands better models to study the interactions between immunity and RT for effective therapy. We present a model that reveals complex roles for adaptive immune cells in cardiac injury that vary depending on clinically relevant factors, including RT dose/fractionation, sex, and genetic background.

17.
Front Cardiovasc Med ; 7: 23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195269

RESUMEN

Radiation therapy is received by over half of all cancer patients. However, radiation doses may be constricted due to normal tissue side effects. In thoracic cancers, including breast and lung cancers, cardiac radiation is a major concern in treatment planning. There are currently no biomarkers of radiation-induced cardiotoxicity. Complex genetic modifiers can contribute to the risk of radiation-induced cardiotoxicities, yet these modifiers are largely unknown and poorly understood. We have previously reported the SS (Dahl salt-sensitive/Mcwi) rat strain is a highly sensitized model of radiation-induced cardiotoxicity compared to the more resistant Brown Norway (BN) rat strain. When rat chromosome 3 from the resistant BN rat strain is substituted into the SS background (SS.BN3 consomic), it significantly attenuates radiation-induced cardiotoxicity, demonstrating inherited genetic variants on rat chromosome 3 modify radiation sensitivity. Genes involved with mitochondrial function were differentially expressed in the hearts of SS and SS.BN3 rats 1 week after radiation. Here we further assessed differences in mitochondria-related genes between the sensitive SS and resistant SS.BN3 rats. We found mitochondrial-related gene expression differed in untreated hearts, while no differences in mitochondrial morphology were seen 1 week after localized heart radiation. At 12 weeks after localized cardiac radiation, differences in mitochondrial complex protein expression in the left ventricles were seen between the SS and SS.BN3 rats. These studies suggest that differences in mitochondrial gene expression caused by inherited genetic variants may contribute to differences in sensitivity to cardiac radiation.

18.
Am J Physiol Heart Circ Physiol ; 316(6): H1267-H1280, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30848680

RESUMEN

Radiation therapy is used in ~50% of cancer patients to reduce the risk of recurrence and in some cases improve survival. Despite these benefits, doses can be limited by toxicity in multiple organs, including the heart. The underlying causes and biomarkers of radiation-induced cardiotoxicity are currently unknown, prompting the need for experimental models with inherent differences in sensitivity and resistance to the development of radiation-induced cardiotoxicity. We have identified the parental SS (Dahl salt-sensitive/Mcwi) rat strain to be a highly-sensitized model of radiation-induced cardiotoxicity. In comparison, substitution of rat chromosome 3 from the resistant BN (Brown Norway) rat strain onto the SS background (SS-3BN consomic) significantly attenuated radiation-induced cardiotoxicity. SS-3BN rats had less radiation-induced cardiotoxicity than SS rats, as measured by survival, pleural and pericardial effusions, echocardiogram parameters, and histological damage. Mast cells, previously shown to have predominantly protective roles in radiation-induced cardiotoxicity, were increased in the more resistant SS-3BN hearts postradiation. RNA sequencing from SS and SS-3BN hearts at 1 wk postradiation revealed 5,098 differentially expressed candidate genes across the transcriptome and 350 differentially expressed genes on rat chromosome 3, which coincided with enrichment of multiple pathways, including mitochondrial dysfunction, sirtuin signaling, and ubiquitination. Upstream regulators of enriched pathways included the oxidative stress modulating transcription factor, Nrf2, which is located on rat chromosome 3. Nrf2 target genes were also differentially expressed in the SS vs. SS-3BN consomic hearts postradiation. Collectively, these data confirm the existence of heritable modifiers in radiation-induced cardiotoxicity and provide multiple biomarkers, pathways, and candidate genes for future analyses. NEW & NOTEWORTHY This novel study reveals that heritable genetic factors have the potential to modify normal tissue sensitivity to radiation. Gene variant(s) on rat chromosome 3 can contribute to enhanced cardiotoxicity displayed in the SS rats vs. the BN and SS-3BN consomic rats. Identifying genes that lead to understanding the mechanisms of radiation-induced cardiotoxicity represents a novel method to personalize radiation treatment, as well as predict the development of radiation-induced cardiotoxicity.


Asunto(s)
Mapeo Cromosómico , Cromosomas de los Mamíferos , Genes Modificadores , Variación Genética , Cardiopatías/genética , Traumatismos por Radiación/genética , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Cardiopatías/metabolismo , Cardiopatías/patología , Masculino , Mastocitos/metabolismo , Mastocitos/patología , Miocardio/metabolismo , Miocardio/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Ratas Endogámicas BN , Ratas Endogámicas Dahl , Transducción de Señal
20.
J Biol Chem ; 291(12): 6534-45, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26814130

RESUMEN

The small GTPase DiRas1 has tumor-suppressive activities, unlike the oncogenic properties more common to small GTPases such as K-Ras and RhoA. Although DiRas1 has been found to be a tumor suppressor in gliomas and esophageal squamous cell carcinomas, the mechanisms by which it inhibits malignant phenotypes have not been fully determined. In this study, we demonstrate that DiRas1 binds to SmgGDS, a protein that promotes the activation of several oncogenic GTPases. In silico docking studies predict that DiRas1 binds to SmgGDS in a manner similar to other small GTPases. SmgGDS is a guanine nucleotide exchange factor for RhoA, but we report here that SmgGDS does not mediate GDP/GTP exchange on DiRas1. Intriguingly, DiRas1 acts similarly to a dominant-negative small GTPase, binding to SmgGDS and inhibiting SmgGDS binding to other small GTPases, including K-Ras4B, RhoA, and Rap1A. DiRas1 is expressed in normal breast tissue, but its expression is decreased in most breast cancers, similar to its family member DiRas3 (ARHI). DiRas1 inhibits RhoA- and SmgGDS-mediated NF-κB transcriptional activity in HEK293T cells. We also report that DiRas1 suppresses basal NF-κB activation in breast cancer and glioblastoma cell lines. Taken together, our data support a model in which DiRas1 expression inhibits malignant features of cancers in part by nonproductively binding to SmgGDS and inhibiting the binding of other small GTPases to SmgGDS.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Neoplasias de la Mama/enzimología , Carcinoma Ductal de Mama/enzimología , GTP Fosfohidrolasas/química , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Supresoras de Tumor/química , Proteína de Unión al GTP rhoA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...