Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Adv ; 10(19): eadk9137, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728395

RESUMEN

Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet, the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a diet-induced obese ferret model and tools to demonstrate that, like humans, obesity resulted in notable changes to the lung microenvironment, leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for a longer period, making them more likely to transmit to contacts. These data suggest that the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission and a key tool for therapeutic and intervention development for this high-risk population.


Asunto(s)
Modelos Animales de Enfermedad , Hurones , Obesidad , Infecciones por Orthomyxoviridae , Animales , Obesidad/virología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Pulmón/virología , Pulmón/patología , Índice de Severidad de la Enfermedad , Dieta , Humanos , Esparcimiento de Virus , Gripe Humana/transmisión , Gripe Humana/virología
2.
Sci Rep ; 13(1): 17820, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857783

RESUMEN

SARS-CoV-2 has caused millions of infections worldwide since its emergence in 2019. Understanding how infection and vaccination induce mucosal immune responses and how they fluctuate over time is important, especially since they are key in preventing infection and reducing disease severity. We established a novel methodology for assessing SARS-CoV-2 cytokine and antibody responses at the nasal epithelium by using nasopharyngeal swabs collected longitudinally before and after either SARS-CoV-2 infection or vaccination. We then compared responses between mucosal and systemic compartments. We demonstrate that cytokine and antibody profiles differ between compartments. Nasal cytokines show a wound healing phenotype while plasma cytokines are consistent with pro-inflammatory pathways. We found that nasal IgA and IgG have different kinetics after infection, with IgA peaking first. Although vaccination results in low nasal IgA, IgG induction persists for up to 180 days post-vaccination. This research highlights the importance of studying mucosal responses in addition to systemic responses to respiratory infections. The methods described herein can be used to further mucosal vaccine development by giving us a better understanding of immunity at the nasal epithelium providing a simpler, alternative clinical practice to studying mucosal responses to infection.


Asunto(s)
COVID-19 , Inmunidad Mucosa , Humanos , SARS-CoV-2 , Mucosa Nasal/metabolismo , Vacunación , Inmunoglobulina A , Citocinas/metabolismo , Inmunoglobulina G , Anticuerpos Antivirales
3.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808835

RESUMEN

Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a novel diet-induced obese ferret model and new tools to demonstrate that like humans, obesity resulted in significant changes to the lung microenvironment leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for longer making them more likely to transmit to contacts. These data suggest the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission, and a key tool for therapeutic and intervention development for this high-risk population. Teaser: A new ferret model and tools to explore obesity's impact on respiratory virus infection, susceptibility, and community transmission.

4.
bioRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37503213

RESUMEN

SARS-CoV-2 has caused millions of infections worldwide since its emergence in 2019. Understanding how infection and vaccination induce mucosal immune responses and how they fluctuate over time is important, especially since they are key in preventing infection and reducing disease severity. We established a novel methodology for assessing SARS-CoV-2 cytokine and antibody responses at the nasal epithelium by using nasopharyngeal swabs collected longitudinally before and after either SARS-CoV-2 infection or vaccination. We then compared responses between mucosal and systemic compartments. We demonstrate that cytokine and antibody profiles differ markedly between compartments. Nasal cytokines show a wound healing phenotype while plasma cytokines are consistent with pro-inflammatory pathways. We found that nasal IgA and IgG have different kinetics after infection, with IgA peaking first. Although vaccination results in low nasal IgA, IgG induction persists for up to 180 days post-vaccination. This research highlights the importance of studying mucosal responses in addition to systemic responses to respiratory infections to understand the correlates of disease severity and immune memory. The methods described herein can be used to further mucosal vaccine development by giving us a better understanding of immunity at the nasal epithelium providing a simpler, alternative clinical practice to studying mucosal responses to infection. Teaser: A nasopharyngeal swab can be used to study the intranasal immune response and yields much more information than a simple viral diagnosis.

5.
Viruses ; 15(6)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37376541

RESUMEN

The Lluta River is the northernmost coastal wetland in Chile, representing a unique ecosystem and an important source of water in the extremely arid Atacama Desert. During peak season, the wetland is home to more than 150 species of wild birds and is the first stopover point for many migratory species that arrive in the country along the Pacific migratory route, thereby representing a priority site for avian influenza virus (AIV) surveillance in Chile. The aim of this study was to determine the prevalence of influenza A virus (IAV) in the Lluta River wetland, identify subtype diversity, and evaluate ecological and environmental factors that drive the prevalence at the study site. The wetland was studied and sampled from September 2015 to October 2020. In each visit, fresh fecal samples of wild birds were collected for IAV detection by real-time RT-PCR. Furthermore, a count of wild birds present at the site was performed and environmental variables, such as temperature, rainfall, vegetation coverage (Normalized Difference Vegetation Index-NDVI), and water body size were determined. A generalized linear mixed model (GLMM) was built to assess the association between AIV prevalence and explanatory variables. Influenza positive samples were sequenced, and the host species was determined by barcoding. Of the 4349 samples screened during the study period, overall prevalence in the wetland was 2.07% (95% CI: 1.68 to 2.55) and monthly prevalence of AIV ranged widely from 0% to 8.6%. Several hemagglutinin (HA) and neuraminidase (NA) subtypes were identified, and 10 viruses were isolated and sequenced, including low pathogenic H5, H7, and H9 strains. In addition, several reservoir species were recognized (both migratory and resident birds), including the newly identified host Chilean flamingo (Phoenicopterus chilensis). Regarding environmental variables, prevalence of AIV was positively associated with NDVI (OR = 3.65, p < 0.05) and with the abundance of migratory birds (OR = 3.57, p < 0.05). These results emphasize the importance of the Lluta wetland as a gateway to Chile for viruses that come from the Northern Hemisphere and contribute to the understanding of AIV ecological drivers.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Chile/epidemiología , Humedales , Ecosistema , Prevalencia , Tecnología de Sensores Remotos , Gripe Aviar/epidemiología , Animales Salvajes , Aves , Virus de la Influenza A/genética
6.
Emerg Microbes Infect ; 12(2): 2220569, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37254689

RESUMEN

Highly pathogenic avian influenza (HPAI) A/H5N1 viruses continue to pose a significant threat to animal and human health worldwide. In late 2022, the first confirmed case of HPAI A/H5N1 infection in wild birds in Chile near the Chilean-Peruvian border was reported. Active surveillance by our group in the adyacent Lluta river estuary revealed an increase in A/H5N1 prevalence coinciding with the arrival of migratory birds from the Northern Hemisphere. Genomic analysis of A/H5N1-positive samples demonstrated a close genetic relationship to strains detected in Peru during the same period, which originated from A/H5N1 viruses causing outbreaks in North America. Notably, we identified genetic mutations that did not correlate with known enhanced transmission or binding traits to mammalian receptors. In summary, this study provides valuable genomic insights into the A/H5N1 Clade 2.3.4.4b viruses in wild birds in Chile, emphasizing the need for enhanced surveillance and response strategies to mitigate the threat posed by these highly pathogenic avian influenza viruses in South America.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Aves , Chile/epidemiología , Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/genética , Mamíferos , Filogenia
7.
Viruses ; 14(4)2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35458448

RESUMEN

Little is known about the prevalence of avian influenza viruses (AIV) in wildlife and domestic animals in Polynesia. Here, we present the results of active AIV surveillance performed during two sampling seasons in 2019 on Easter Island (Rapa Nui). Tracheal and cloacal swabs as well as sera samples were obtained from domestic backyard poultry, while fresh faeces were collected from wild birds. In addition to detecting antibodies against AIV in 46% of the domestic chickens in backyard production systems tested, we isolated a novel low pathogenic H6N1 virus from a chicken. Phylogenetic analysis of all genetic segments revealed that the virus was closely related to AIV's circulating in South America. Our analysis showed different geographical origins of the genetic segments, with the PA, HA, NA, NP, and MP gene segments coming from central Chile and the PB2, PB1, and NS being closely related to viruses isolated in Argentina. While the route of introduction can only be speculated, our analysis shows the persistence and independent evolution of this strain in the island since its putative introduction between 2015 and 2016. The results of this research are the first evidence of AIV circulation in domestic birds on a Polynesian island and increase our understanding of AIV ecology in region, warranting further surveillance on Rapa Nui and beyond.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Animales Salvajes , Pollos , Chile/epidemiología , Gripe Aviar/epidemiología , Filogenia , Enfermedades de las Aves de Corral/epidemiología
8.
Clin Infect Dis ; 75(1): e705-e714, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34891165

RESUMEN

BACKGROUND: Following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination there is significant variability between individuals in protective antibody levels against SARS-CoV-2, and within individuals against different virus variants. However, host demographic or clinical characteristics that predict variability in cross-reactive antibody levels are not well-described. These data could inform clinicians, researchers, and policymakers on the populations most likely to require vaccine booster shots. METHODS: In an institutional review board-approved prospective observational cohort study of staff at St. Jude Children's Research Hospital, we identified participants with plasma samples collected after SARS-CoV-2 infection, after mRNA vaccination, and after vaccination following infection, and quantitated immunoglobulin G (IgG) levels by enzyme-linked immunosorbent assay to the spike receptor binding domain (RBD) from 5 important SARS-CoV-2 variants (Wuhan Hu-1, B.1.1.7, B.1.351, P.1, and B.1.617.2). We used regression models to identify factors that contributed to cross-reactive IgG against 1 or multiple viral variants. RESULTS: Following infection, a minority of the cohort generated cross-reactive antibodies, IgG antibodies that bound all tested variants. Those who did had increased disease severity, poor metabolic health, and were of a particular ancestry. Vaccination increased the levels of cross-reactive IgG levels in all populations, including immunocompromised, elderly, and persons with poor metabolic health. Younger people with a healthy weight mounted the highest responses. CONCLUSIONS: Our findings provide important new information on individual antibody responses to infection/vaccination that could inform clinicians on populations that may require follow-on immunization.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Inmunoglobulina G , Persona de Mediana Edad , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus , Vacunación
9.
Microbiol Spectr ; 9(2): e0105921, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34704832

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and has since caused a global pandemic resulting in millions of cases and deaths. Diagnostic tools and serological assays are critical for controlling the outbreak, especially assays designed to quantitate neutralizing antibody levels, considered the best correlate of protection. As vaccines become increasingly available, it is important to identify reliable methods for measuring neutralizing antibody responses that correlate with authentic virus neutralization but can be performed outside biosafety level 3 (BSL3) laboratories. While many neutralizing assays using pseudotyped virus have been developed, there have been few studies comparing the different assays to each other as surrogates for authentic virus neutralization. Here, we characterized three enzyme-linked immunosorbent assays (ELISAs) and three pseudotyped vesicular stomatitis virus (VSV) neutralization assays and assessed their concordance with authentic virus neutralization. The most accurate assays for predicting authentic virus neutralization were luciferase- and secreted embryonic alkaline phosphatase (SEAP)-expressing pseudotyped virus neutralizations, followed by green fluorescent protein (GFP)-expressing pseudotyped virus neutralization, and then the ELISAs. IMPORTANCE The ongoing COVID-19 pandemic is caused by infection with severe acute respiratory syndrome virus 2 (SARS-CoV-2). Prior infection or vaccination can be detected by the presence of antibodies in the blood. Antibodies in the blood are also considered to be protective against future infections from the same virus. The "gold standard" assay for detecting protective antibodies against SARS-CoV-2 is neutralization of authentic SARS-CoV-2 virus. However, this assay can only be performed under highly restrictive biocontainment conditions. We therefore characterized six antibody-detecting assays for their correlation with authentic virus neutralization. The significance of our research is in outlining the advantages and disadvantages of the different assays and identifying the optimal surrogate assay for authentic virus neutralization. This will allow for more accurate assessments of protective immunity against SARS-CoV-2 following infection and vaccination.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , Adulto , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dominios Proteicos/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , Virus de la Estomatitis Vesicular New Jersey/inmunología
10.
Prev Vet Med ; 191: 105349, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33892254

RESUMEN

As companion animals, dogs and cats live in close contact with humans, generating the possibility of interspecies pathogen transmission events. Equine origin H3N8 and avian origin H5N1 influenza virus have been reported in dogs and cats respectively since 2004 with outbreaks associated with different strains recorded for both species in Asia and North America. To date, there have been no reports of influenza viruses from companion animals in South America. To fill this gap in knowledge, we performed active epidemiological surveillance in shelters that received abandoned animals, backyard production systems and veterinary clinics between May 2017 and January 2019 to estimate the burden of influenza infection in cats and dogs in the central region of Chile. Blood samples, oropharyngeal swabs or both were collected for influenza A virus detection by RT-qPCR, NP-ELISA, and hemagglutination inhibition assay. Logistic regression models were performed to assess the association between NP-ELISA-positivity and variables including sex and animal origin. The percentage of ELISA-positive samples was 43.5 % (95 % CI: 37.0-50.1) and 23.3 % (95 % CI: 10.6-42.7) for dogs and cats, respectively. No association was found between NP-ELISA results and sex or animal origin for either dogs or cats. Two ELISA positive samples showed hemagglutination inhibition titers against pandemic H1N1 influenza. One dog sample tested positive by RT-qPCR, indicating an overall RT-qPCR positivity in dogs of 1.1 % (95 % CI: 0.05-6.7). None of the tested cat samples were positive by this assay.

11.
Emerg Infect Dis ; 26(12): 2887-2898, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33219648

RESUMEN

Since their discovery in the United States in 1963, outbreaks of infection with equine influenza virus (H3N8) have been associated with serious respiratory disease in horses worldwide. Genomic analysis suggests that equine H3 viruses are of an avian lineage, likely originating in wild birds. Equine-like internal genes have been identified in avian influenza viruses isolated from wild birds in the Southern Cone of South America. However, an equine-like H3 hemagglutinin has not been identified. We isolated 6 distinct H3 viruses from wild birds in Chile that have hemagglutinin, nucleoprotein, nonstructural protein 1, and polymerase acidic genes with high nucleotide homology to the 1963 H3N8 equine influenza virus lineage. Despite the nucleotide similarity, viruses from Chile were antigenically more closely related to avian viruses and transmitted effectively in chickens, suggesting adaptation to the avian host. These studies provide the initial demonstration that equine-like H3 hemagglutinin continues to circulate in a wild bird reservoir.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Gripe Aviar , Animales , Pollos , Chile/epidemiología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Caballos , Subtipo H3N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia
12.
Viruses ; 12(6)2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32516960

RESUMEN

Noroviruses are a leading cause of gastroenteritis worldwide. Although infections in healthy individuals are self-resolving, immunocompromised individuals are at risk for chronic disease and severe complications. Chronic norovirus infections in immunocompromised hosts are often characterized by long-term virus shedding, but it is unclear whether this shed virus remains infectious. We investigated the prevalence, genetic heterogeneity, and temporal aspects of norovirus infections in 1140 patients treated during a 6-year period at a pediatric research hospital. Additionally, we identified 20 patients with chronic infections lasting 37 to >418 days. Using a new human norovirus in vitro assay, we confirmed the continuous shedding of infectious virus for the first time. Shedding lasted longer in male patients and those with diarrheal symptoms. Prolonged shedding of infectious norovirus in immunocompromised hosts can potentially increase the likelihood of transmission, highlighting the importance of isolation precautions to prevent nosocomial infections.


Asunto(s)
Infecciones por Caliciviridae/virología , Norovirus/fisiología , Esparcimiento de Virus , Adolescente , Adulto , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/transmisión , Portador Sano/transmisión , Portador Sano/virología , Niño , Preescolar , Infección Hospitalaria/transmisión , Infección Hospitalaria/virología , Heces/virología , Femenino , Gastroenteritis/virología , Humanos , Huésped Inmunocomprometido , Lactante , Masculino , Norovirus/genética , Pediatría/estadística & datos numéricos , Estudios Prospectivos , Estaciones del Año , Adulto Joven
13.
PLoS Pathog ; 15(10): e1008057, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31671153

RESUMEN

Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions.


Asunto(s)
Infecciones por Astroviridae/inmunología , Infecciones por Astroviridae/veterinaria , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Mamastrovirus/fisiología , Tropismo Viral/genética , Animales , Células CACO-2 , Línea Celular , Chlorocebus aethiops , Enterocitos/virología , Gastroenteritis/virología , Humanos , Inmunidad Innata/inmunología , Interferones/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/virología , Intestino Delgado/citología , Intestino Delgado/virología , Mamastrovirus/genética , Mamastrovirus/inmunología , Células Vero , Tropismo Viral/inmunología
14.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189707

RESUMEN

The influence of living in small remote villages on the diversity of viruses in the nasal mucosa was investigated in three Colombian villages with very different levels of geographic isolation. Metagenomic analysis was used to characterize viral nucleic acids in nasal swabs from 63 apparently healthy young children. Sequences from human virus members of the families Anelloviridae, Papillomaviridae, Picornaviridae, Herpesviridae, Polyomaviridae, Adenoviridae, and Paramyxoviridae were detected in decreasing proportions of children. The number of papillomavirus infections detected was greater among Hispanic children most exposed to outside contacts, while anellovirus infections were more common in the isolated indigenous villages. The diversity of the other human viruses detected did not differ among the villages. Closely related variants of rhinovirus A or B were identified in 2 to 4 children from each village, reflecting ongoing transmission clusters. Genomes of viruses not currently known to infect humans, including members of the families Parvoviridae, Partitiviridae, Dicistroviridae, and Iflaviridae and circular Rep-encoding single-stranded DNA (CRESS-DNA) virus, were also detected in nasal swabs, possibly reflecting environmental contamination from insect, fungal, or unknown sources. Despite the high levels of geographic and cultural isolation, the overall diversity of human viruses in the nasal passages of children was not reduced in highly isolated indigenous villages, indicating ongoing exposure to globally circulating viruses.IMPORTANCE Extreme geographic and cultural isolation can still be found in some indigenous South American villages. Such isolation may be expected to limit the introduction of otherwise common and widely distributed viruses. Very small population sizes may also result in rapid local viral extinction due to a lack of seronegative subjects to maintain transmission chains for rapidly cleared viruses. We compared the viruses in the nasal passages of young children in three villages with increasing levels of geographic isolation. We found that isolation did not reduce the overall diversity of viral infections. Multiple infections with nearly identical rhinoviruses could be detected within each village, likely reflecting recent viral introductions and transmission clusters among epidemiologically linked members of these very small communities. We conclude that, despite their geographic isolation, remote indigenous villages show evidence of ongoing exposure to globally circulating viruses.


Asunto(s)
Metagenómica/métodos , Nariz/virología , Virus/clasificación , Biodiversidad , Niño , Preescolar , Colombia , Femenino , Humanos , Pueblos Indígenas , Masculino , Filogenia , Filogeografía , Virus/aislamiento & purificación
15.
Emerg Microbes Infect ; 7(1): 44, 2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29593259

RESUMEN

While the circulation of avian influenza viruses (IAV) in wild birds in the northern hemisphere has been well documented, data from South America remain sparse. To address this gap in knowledge, we undertook IAV surveillance in wild birds in parts of Central and Northern Chile between 2012 and 2015. A wide diversity of hemagglutinin (HA) and neuraminidase (NA) subtypes were identified and 16 viruses were isolated including low pathogenic H5 and H7 strains, making this the largest and most diverse collection of Chilean avian IAVs to date. Unlike IAVs isolated from wild birds in other South American countries where the genes were most like viruses isolated from wild birds in either North America or South America, the Chilean viruses were reassortants containing genes like viruses isolated from both continents. In summary, our studies demonstrate that genetically diverse avian IAVs are circulating in wild birds in Chile highlighting the need for further investigation in this understudied area of the world.


Asunto(s)
Animales Salvajes/virología , Aves/virología , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Animales , Chile/epidemiología , Variación Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/genética , Gripe Aviar/virología , Neuraminidasa/genética , Filogenia , Análisis de Secuencia de ADN
16.
Emerg Infect Dis ; 23(2): 241-251, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28098524

RESUMEN

Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America.


Asunto(s)
Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Hurones/virología , Subtipo H1N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Enfermedades de los Animales/epidemiología , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Chile/epidemiología , Femenino , Geografía Médica , Pruebas de Inhibición de Hemaglutinación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subtipo H1N2 del Virus de la Influenza A/clasificación , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Gripe Humana/virología , Vigilancia en Salud Pública , ARN Viral , Estaciones del Año , Estudios Seroepidemiológicos , Porcinos , Replicación Viral
17.
Emerg Infect Dis ; 23(2): 288-290, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28098537

RESUMEN

Human astroviruses are a major cause of pediatric gastroenteritis, especially in immunocompromised children. We conducted a retrospective study to demonstrate that diverse astrovirus genotypes can co-circulate in pediatric oncology patients. A subset of cases is associated with long-term virus shedding (range 17-183 days).


Asunto(s)
Infecciones por Astroviridae/complicaciones , Infecciones por Astroviridae/epidemiología , Mamastrovirus , Neoplasias/complicaciones , Neoplasias/epidemiología , Adolescente , Factores de Edad , Infecciones por Astroviridae/virología , Niño , Preescolar , Heces/virología , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mamastrovirus/clasificación , Mamastrovirus/genética , Filogenia , Estudios Retrospectivos , Tennessee/epidemiología , Esparcimiento de Virus
18.
mBio ; 7(6)2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27803180

RESUMEN

The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1) capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2) capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3) from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction. IMPORTANCE: Acute gastroenteritis, with its sequela diarrhea, is one of the most important causes of childhood morbidity and mortality worldwide. A variety of infectious agents cause gastroenteritis, and in many cases, an enterotoxin produced by the agent is involved in disease manifestations. Although we commonly think of bacteria as a source of toxins, at least one enteric virus, rotavirus, produces a protein with enterotoxigenic activity during viral replication. In these studies, we demonstrate that oral administration of the turkey astrovirus 2 (TAstV-2) structural (capsid) protein induces acute diarrhea, increases barrier permeability, and causes relocalization of NHE3 in the small intestine, suggesting that rotavirus may not be alone in possessing enterotoxigenic activity.


Asunto(s)
Avastrovirus/patogenicidad , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/toxicidad , Diarrea/inducido químicamente , Diarrea/patología , Administración Oral , Membrana Celular/química , Citoplasma/química , Mucosa Intestinal/patología , Intercambiadores de Sodio-Hidrógeno/análisis , Turquía
19.
J Virol ; 90(4): 1988-96, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26656701

RESUMEN

UNLABELLED: Little is known about intrinsic epithelial cell responses against astrovirus infection. Here we show that human astrovirus type 1 (HAstV-1) infection induces type I interferon (beta interferon [IFN-ß]) production in differentiated Caco2 cells, which not only inhibits viral replication by blocking positive-strand viral RNA and capsid protein synthesis but also protects against HAstV-1-increased barrier permeability. Excitingly, we found similar results in vivo using a murine astrovirus (MuAstV) model, providing new evidence that virus-induced type I IFNs may protect against astrovirus replication and pathogenesis in vivo. IMPORTANCE: Human astroviruses are a major cause of pediatric diarrhea, yet little is known about the immune response. Here we show that type I interferon limits astrovirus infection and preserves barrier permeability both in vitro and in vivo. Importantly, we characterized a new mouse model for studying astrovirus replication and pathogenesis.


Asunto(s)
Células Epiteliales/inmunología , Células Epiteliales/virología , Interferón Tipo I/inmunología , Mamastrovirus/inmunología , Mamastrovirus/fisiología , Permeabilidad , Replicación Viral , Animales , Infecciones por Astroviridae/patología , Infecciones por Astroviridae/virología , Células CACO-2 , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL
20.
PLoS Pathog ; 11(11): e1005225, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26571270

RESUMEN

Astroviruses (AstVs) are positive sense, single-stranded RNA viruses transmitted to a wide range of hosts via the fecal-oral route. The number of AstV-infected animal hosts has rapidly expanded in recent years with many more likely to be discovered because of the advances in viral surveillance and next generation sequencing. Yet no study to date has identified human AstV genotypes in animals, although diverse AstV genotypes similar to animal-origin viruses have been found in children with diarrhea and in one instance of encephalitis. Here we provide important new evidence that non-human primates (NHP) can harbor a wide variety of mammalian and avian AstV genotypes, including those only associated with human infection. Serological analyses confirmed that >25% of the NHP tested had antibodies to human AstVs. Further, we identified a recombinant AstV with parental relationships to known human AstVs. Phylogenetic analysis suggests AstVs in NHP are on average evolutionarily much closer to AstVs from other animals than are AstVs from bats, a frequently proposed reservoir. Our studies not only demonstrate that human astroviruses can be detected in NHP but also suggest that NHP are unique in their ability to support diverse AstV genotypes, further challenging the paradigm that astrovirus infection is species-specific.


Asunto(s)
Infecciones por Astroviridae/virología , Evolución Biológica , Heces/virología , Macaca/virología , Animales , Infecciones por Astroviridae/diagnóstico , Diarrea/genética , Genotipo , Humanos , ARN Viral/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...