Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
ACS Appl Polym Mater ; 6(11): 6820-6830, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38903401

RESUMEN

Food smart packaging has emerged as a promising technology to address consumer concerns regarding food conservation and food safety. In this context, we report the rational design of azide-containing pyranoflavylium-based pH-sensitive dye for subsequent click chemistry conjugation toward a chitosan-modified alkyne. The chitosan-pyranoflavylium conjugate was characterized by infrared (ATR-FTIR), ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) spectroscopies, and dynamic light scattering (DLS), as well as its thermodynamic parameters related to their pH-dependent chromatic features. The fabrication of thin-films through electrostatic-driven layer-by-layer (LbL) assembly technology was first screened by quartz crystal microbalance with dissipation monitoring (QCM-D) onto gold substrates, and then free-standing (FS) multilayered membranes from polypropylene substrate were obtained using a homemade automatic dipping robot. The membranes' characterization included morphology analysis and thickness evaluation, assessed by scanning electron microscopy (SEM), pH-responsive color change performance tests using buffer solutions at different pH levels, and biogenic amines-enriched model solutions, demonstrating the feasibility and effectiveness of the chitosan-pyranoflavylium/alginate biomembranes for food spoilage monitoring. This work provides insights toward the development of innovative pH-responsive smart biomaterials for advanced and sustainable technological packaging solutions, which could significantly contribute to ensuring food safety and quality, while reducing food waste.

2.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892341

RESUMEN

Anthocyanins are amazing plant-derived colorants with highly valuable properties; however, their chemical and color instability issues limit their wide application in different food industry-related products such as active and intelligent packaging. In a previous study, it was demonstrated that anthocyanins could be stabilized into green plasticizers namely deep eutectic solvents (DESs). In this work, the fabrication of edible films by integrating anthocyanins along with DESs into biocompatible chitosan (CHT)-based formulations enriched with polyvinyl alcohol (PVA) and PVA nanoparticles was investigated. CHT/PVA-DES films' physical properties were characterized by scanning electron microscopy, water vapor permeability, swelling index, moisture sorption isotherm, and thermogravimetry analysis. Innovative red-to-blue formulation films were achieved for CHT/PVA nanoparticles (for 5 min of sonication) at a molar ratio 1:1, and with 10% of ternary DES (TDES)-containing malvidin-3-glucoside (0.1%) where the physical properties of films were enhanced. After immersion in solutions at different pH values, films submitted to pHs 5-8 were revealed to be more color stable and resistant with time than at acidic pH values.


Asunto(s)
Antocianinas , Quitosano , Alcohol Polivinílico , Solventes , Alcohol Polivinílico/química , Antocianinas/química , Quitosano/química , Solventes/química , Biopelículas/efectos de los fármacos , Nanopartículas/química , Embalaje de Alimentos/métodos , Concentración de Iones de Hidrógeno , Color , Permeabilidad
3.
RSC Sustain ; 2(4): 975-987, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38585331

RESUMEN

PU foams are versatile materials that find applications in a wide range of products, from upholstery to packaging and construction. These foams consist primarily of two components, polyol and prepolymer, and their concentrations play a crucial role in determining their physical and mechanical properties. A second-order mixture design approach is used in this work to identify the significant components and their contributions on the physical-mechanical properties of biodegradable castor oil-based foams. The experimental design includes three components: two types of polyols and one prepolymer. These components are varied in nine distinct conditions to evaluate their effects on properties such as expansion rate, bulk density, compressive strength, and tensile strength. The Scheffé's quadratic model coefficients exhibit R-squared values higher than 0.84 in most cases. Chemical analysis using infrared spectroscopy confirms the successful formation of the urethane bond during the manufacturing process. The biobased foams developed in this work have densities ranging between 61 and 100 kg m-3, compressive modulus of 11-15 MPa and compressive strength between 273 and 429 kPa. The tensile modulus varies between 3.2 and 4.9 MPa, with a tensile strength in the range of 370-500 kPa. These results highlight the potential of biodegradable castor oil-based foams as promising alternative materials to traditional synthetic foams.

4.
Food Chem ; 448: 139153, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569410

RESUMEN

Salivary proteins precipitation by interaction with polyphenols is the major mechanism for astringency. However, alternative mechanisms seem involved in the perception of different subqualities of astringency. In this study, adsorption of four astringent agents to in vitro oral models and their sensory properties were assessed. Overall, green tea infusion and tannic acid have shown a higher adsorption potential for models with oral cells and absence of saliva. Alum and grape seed extract presented higher adsorption in models with presence of oral cells and saliva. Multiple factor analysis suggested that adsorption may represent important mechanisms to elicit the astringency of alum. Models including saliva, were closely associated with overall astringency and aggressive subquality. Models with cells and absent saliva were closely associated with greenness, suggesting a taste receptor mechanism involvement in the perception. For the first time a correlation between an oral-cell based assay and astringency sensory perception was shown.

5.
J Agric Food Chem ; 72(13): 7497-7510, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38520401

RESUMEN

The kinetics, thermodynamics, and degradation of malvidin mono- and diglucosides were studied following a holistic approach by extending to the basic medium. In acidic conditions, the reversible kinetics of the flavylium cation toward the equilibrium is controlled by the hydration and cis-trans isomerization steps, while in the basic medium, the OH- nucleophilic addition to the anionic quinoidal bases is the slowest step. There is a pH range (transition pHs), between the acidic and basic paradigms, that includes physiological pH (7.4), where degradation reactions occur faster, preventing the system from reaching the equilibrium. The transition pH of the diglucoside is narrower, and in contrast with the monoglucoside, there is no evidence for the formation of colored oligomers among the degradation products. Noteworthy, OH- addition in position 4 to form B42-, a kinetic product that decreases the overall equilibration rate, was observed only for the diglucoside.


Asunto(s)
Antocianinas , Glucósidos , Antocianinas/metabolismo , Termodinámica
6.
Nutrients ; 16(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398875

RESUMEN

Food allergies are becoming ever more prevalent around the world. This pathology is characterized by the breakdown of oral tolerance to ingested food allergens, resulting in allergic reactions in subsequent exposures. Due to the possible severity of the symptoms associated with this pathology, new approaches to prevent it and reduce associated symptoms are of utmost importance. In this framework, dietary phenolic compounds appear as a tool with a not fully explored potential. Some phenolic compounds have been pointed to with the ability to modulate food allergies and possibly reduce their symptoms. These compounds can modulate food allergies through many different mechanisms, such as altering the bioaccessibility and bioavailability of potentially immunogenic peptides, by modulating the human immune system and by modulating the composition of the human microbiome that resides in the oral cavity and the gastrointestinal tract. This review deepens the state-of-the-art of the modulation of these mechanisms by phenolic compounds. While this review shows clear evidence that dietary supplementation with foods rich in phenolic compounds might constitute a new approach to the management of food allergies, it also highlights the need for further research to delve into the mechanisms of action of these compounds and decipher systematic structure/activity relationships.


Asunto(s)
Hipersensibilidad a los Alimentos , Humanos , Alérgenos , Alimentos , Dieta , Fenoles/farmacología , Boca/patología
7.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38399406

RESUMEN

Edible flowers are regaining interest among both the scientific community and the general population, not only for their appealing sensorial characteristics but also from the growing evidence about their health benefits. Among edible flowers, those that contain anthocyanins are among the most consumed worldwide. However, little is known regarding the bioaccessibility and absorption of their bioactive compounds upon ingestion. The aim of this work was to explore, for the first time, the behavior of anthocyanin-rich extracts from selected edible flowers under different food processing conditions and after ingestion using simulated digestions, as well as their absorption at the intestinal level. Overall, the results showed that the monoglucoside and rutinoside anthocyanin extracts were less stable under different pH, temperature, and time conditions as well as different digestive processes in the gastrointestinal tract. There was a prominent decrease in the free anthocyanin content after the intestinal phase, which was more pronounced for the rutinoside anthocyanin extract (78.41% decrease from the oral phase). In contrast, diglucoside and rutinoside anthocyanin extracts showed the highest absorption efficiencies at the intestinal level, of approximately 5% after 4 h of experiment. Altogether, the current results emphasize the influence of anthocyanins' structural arrangement on both their chemical stability as well as their intestinal absorption. These results bring the first insights about the bioaccessibility and absorption of anthocyanins from wild pansy, cosmos, and cornflower and the potential outcomes of such alternative food sources.

8.
Food Res Int ; 178: 114008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309890

RESUMEN

Pigmented wheat varieties (Triticum aestivum spp.) are getting increasingly popular in modern nutrition and thoroughly researched for their functional and nutraceutical value. The colour of these wheat grains is caused by the expression of natural pigments, including carotenoids and anthocyanins, that can be restricted to either the endosperm, pericarp and/or aleurone layers. While contrasts in phytochemical synthesis give rise to variations among purple, blue, dark and yellow grain's antioxidant and radical scavenging capacities, little is known about their influence on gluten proteins expression, digestibility and immunogenic potential in a Celiac Disease (CD) framework. Herein, it has been found that the expression profile and immunogenic properties of gliadin proteins in pigmented wheat grains might be affected by anthocyanins and carotenoids upregulation, and that the spectra of peptide released upon simulated gastrointestinal digestion is also significantly different. Interestingly, anthocyanin accumulation, as opposed to carotenoids, correlated with a lower immunogenicity and toxicity of gliadins at both protein and peptide levels. Altogether, this study provides first-level evidence on the impact modern breeding practices, seeking higher expression levels of health promoting phytochemicals at the grain level, may have on wheat crops functionality and CD tolerability.


Asunto(s)
Enfermedad Celíaca , Gliadina , Humanos , Gliadina/química , Triticum/química , Antocianinas , Fitomejoramiento , Péptidos/química , Espectrometría de Masas , Carotenoides
9.
J Agric Food Chem ; 72(7): 3719-3729, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38345747

RESUMEN

Biogenic amines (BAs) are biologically active nitrogen-containing compounds formed during the food spoilage process and are often related as key markers of food quality, safety, and freshness. Because their presence in foods at high levels can cause significant health problems, researchers have been focused on developing novel strategies and methods for early detection and capture of these analytes. Herein, water-soluble sulfonated calix[n]arene macrocycles (SC4, SC6, and SC8) and a pH-sensitive dye (4'-hydroxy-10-methylpyranoflavylium) were investigated as host-guest systems for BA sensing. The hosts were able to bind the flavylium cation of the dye with association constants of 103 to 104 M-1. The dye complexation also allowed tuning its pKa from 6.72 (free) toward high values: 7.68 (SC4), 7.79 (SC6), and 8.45 (SC8). These data were crucial to optimize the host-guest complexes as optical sensing systems for putrescine/tyramine (pH 7.2-7.6), yielding a colorimetric redshift from yellow to red. The BA sensing was also demonstrated by fluorescence quenching for the calix[n]arene/dye complexes and fluorescence recovery after the addition of BAs. 1H NMR spectroscopy was used to demonstrate the interaction mode, confirming an encapsulation-driven mechanism. Overall, these host-guest systems demonstrated great potential for the detection of BAs, one of the main key markers of food spoilage.


Asunto(s)
Calixarenos , Calixarenos/química , Agua/química , Putrescina , Aminas Biogénicas
10.
Food Chem ; 442: 138480, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241993

RESUMEN

A new compound with a molecular ion mass of m/z 467 in the negative ion mode was found to occur in a white wine aged 30 months in bottle. In this latter, fragment ions compatible with the loss of a carboxylic acid (-44 a.m.u.), a caffeic acid unit (-178 a.m.u.), and a Retro-Diels Alder (-152 a.m.u.) were observed. The present work reports the synthesis of a (+)-catechin-caffeic acid adduct resulting from the condensation reaction between caffeic acid and (+)-catechin. The structural characterization by NMR showed that this adduct is formed by the linkage between carbon 8 at ring A from (+)-catechin and carbon 9 from caffeic acid. In addition, the similarity in the HPLC retention time and UV-Visible spectra of the synthesized compound with the one detected in white wine and the bottling experiments, confirms the presence of this novel (+)-catechin-derived compound in those matrices.


Asunto(s)
Catequina , Vino , Catequina/química , Vino/análisis , Ácidos Cafeicos/análisis , Carbono
11.
FEBS Lett ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281810

RESUMEN

Hypertension is a major contributor to premature death, owing to the associated increased risk of damage to the heart, brain and kidneys. Although hypertension is manageable by medication and lifestyle changes, the risk increases with age. In an increasingly aged society, the incidence of hypertension is escalating, and is expected to increase the prevalence of (cerebro)vascular events and their associated mortality. Adherence to plant-based diets improves blood pressure and vascular markers in individuals with hypertension. Food flavonoids have an inhibitory effect towards angiotensin-converting enzyme (ACE1) and although this effect is greatly diminished upon metabolization, their microbial metabolites have been found to improve endothelial nitric oxide synthase (eNOS) activity. Considering the transmembrane location of ACE1 and eNOS, the ability of (poly)phenols to interact with membrane lipids modulate the cell membrane's biophysical properties and impact on nitric oxide (· NO) synthesis and bioavailability, remain poorly studied. Herein, we provide an overview of the current knowledge on the lipid remodeling of endothelial membranes with age, its impact on the cell membrane's biophysical properties and · NO permeability across the endothelial barrier. We also discuss the potential of (poly)phenols and other plant-based compounds as key players in hypertension management, and address the caveats and challenges in adopted methodologies.

12.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958670

RESUMEN

Bacterial surface proteins assembled into amyloids contribute to biofilm formation and host immune evasion. Streptococcus sanguinis, a pioneer colonizer of teeth commonly involved in cardiovascular infections, expresses about thirty-three proteins anchored to the cell wall by sortase A. Here, we characterized the production of amyloid in S. sanguinis strains differing in biofilm and immune evasion phenotypes and investigated the role of sortase A in amyloidogenesis. Amyloid was identified in biofilms formed by nine strains, using Congo red (CR) staining and cross-polarized light microscopy. Additionally, EGCG, an amyloid inhibitor, impaired biofilm maturation in a strain-specific fashion. The amounts of amyloid-like components quantified in culture fluids of nine strains using thioflavin T and fluorimetry negatively correlated with bacterial binding to complement-activating proteins (SAP, C1q), C3b deposition and rates of opsonophagocytosis in PMNs, implying amyloid production in immune evasion. The deletion of the sortase A gene (srtA) in strain SK36 compromised amyloid production and sucrose-independent biofilm maturation. The srtA mutant further showed increased susceptibility to C3b deposition and altered interactions with PMNs as well as reduced persistence in human blood. These findings highlight the contribution of amyloids to biofilm formation and host immune evasion in S. sanguinis strains, further indicating the participation of sortase A substrates in amyloidogenesis.


Asunto(s)
Evasión Inmune , Streptococcus sanguis , Humanos , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Amiloide/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas
13.
Food Res Int ; 173(Pt 1): 113317, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803626

RESUMEN

It has been increasingly demonstrated over the past few years that some proteolytically resistant gluten peptides may directly affect intestinal cell structure and functions by modulating pro-inflammatory gene expression and oxidative stress. The relationship between oxidative cell damage and Celiac Disease (CD) is supported by several studies on human intestinal epithelial cell lines, such as the Caco-2 cell model, already shown to be particularly sensitive to the pro-oxidative and pro-apoptotic properties of gluten protein digests. Through providing valuable evidence concerning some of the pathophysiological mechanisms that may be at play in gluten-related disorders, most of these in vitro studies have been employing simplified digestion schemes and intestinal cell systems that do not fully resemble mature enterocytes in terms of their characteristic tight junctions, microvilli and membrane transporters. Herein the peptide profile and pro-oxidative effect of two different gastrointestinal gliadin digestions was thoroughly characterized and comprehensively compared: one following the complete INFOGEST workflow and a second one by-passing gastric processing, to assess the dependence of gliadin-triggered downstream cell effects on pepsin activity. In both matrices, gluten-derived immunogenic peptide sequences were identified by non-targeted LC-MS/MS. Altogether, this study provides first-hand data concerning the still unexplored peptide composition, gastric-dependence and immunogenicity of physiologically representative gliadin protein digests as well as foundational clues stressing the need for more complex and integrated in vitro cell systems when modelling and exploiting gluten-induced perturbations in the nucleophilic tone and inflammatory status of intestinal epithelial cells.


Asunto(s)
Gliadina , Glútenes , Humanos , Glútenes/química , Gliadina/química , Células CACO-2 , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/química , Células Epiteliales/metabolismo
14.
Plants (Basel) ; 12(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836137

RESUMEN

The consumption of 'not-from-concentrate' (NFC) fruit juices can be a convenient and enjoyable way to incorporate the nutritional benefits and flavors of fruits into one's diet. This study will focus on the effect of production of juices from apple and pear fruits, by using centrifugal decanter and tangential filtration, on the profile of polyphenols as a valuable source of bioactive compounds. Likewise, by-products from the juice industry were characterized in order to understand the high-value-added potential based on their composition of polyphenols. Briefly, apple and apple juice showed great contents of chlorogenic acid (0.990 ± 0.021 mg/g of DW), the dihydrochalcone phloridzin (1.041 ± 0.062 mg/g of DW), procyanidins (0.733 ± 0.121 mg/g of DW) and quercetin derivatives (1.501 ± 0.192 mg/g of DW). Likewise, the most abundant compounds in pear and pear juices were chlorogenic acid (0.917 ± 0.021 mg/g of DW), caffeoylquinic acid (0.180 ± 0.029 mg/g of DW), procyanidins (0.255 ± 0.016 mg/g of DW) and quercetin derivatives (0.181 ± 0.004 mg/g of DW). Both temperature and tangential speed affect the amount of phenolic compounds in fruit juices, highlighting the need to control the technological process to obtain a more nutritious/healthier beverage. Overall, NFC juices arise as a better option when compared with concentrated juices. Furthermore, the higher yield of phenolic compounds found in fruit pomace clearly open new ways for upcycling this fruit by-product as a high-value-added ingredient.

15.
Foods ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685107

RESUMEN

Mycotoxins contamination is a real concern worldwide due to their high prevalence in foods and high toxicity; therefore, strategies that reduce their gastrointestinal bioaccessibility and absorption are of major relevance. The use of dietary fibers as binders of four mycotoxins (zearalenone (ZEA), deoxynivalenol (DON), HT-2, and T-2 toxins) to reduce their bioaccessibility was investigated by in vitro digestion of biscuits enriched with fibers. K-carrageenan is a promising fiber to reduce the bioaccessibility of ZEA, obtaining values lower than 20%, while with pectin a higher reduction of DON, HT-2, and T-2 (50-88%) was achieved. Three metabolites of mycotoxins were detected, of which the most important was T-2-triol, which was detected at higher levels compared to T-2. This work has demonstrated the advantages of incorporating dietary fibers into a biscuit recipe to reduce the bioaccessibility of mycotoxins and to obtain healthier biscuits than when a conventional recipe is performed due to its high content of fiber.

16.
Virulence ; 14(1): 2239519, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37563831

RESUMEN

Streptococcus sanguinis is a ubiquitous commensal species of the oral cavity commonly involved as an opportunistic pathogen in cardiovascular infections. In this study, we investigated the functions of endopeptidase O (PepO) and a C3-degrading protease (CppA) in the systemic virulence of S. sanguinis. Isogenic mutants of pepO and cppA obtained in strain SK36 showed increased susceptibility to C3b deposition and to opsonophagocytosis by human polymorphonuclear neutrophils (PMN). These mutants differ, however, in their profiles of binding to serum amyloid P component (SAP) and C1q, whereas both showed reduced interaction with C4b-binding protein (C4BP) and/or factor H (FH) regulators as compared to SK36. The two mutants showed defects in ex vivo persistence in human blood, serum-mediated invasion of HCAEC endothelial cells, and virulence in a Galleria mellonella infection model. The transcriptional activities of pepO and cppA, assessed by RT-qPCR in nine wild-type strains, further indicated strain-specific profiles of pepO/cppA expression. Moreover, non-conserved amino acid substitutions were detected among the strains, mostly in CppA. Phylogenetic comparisons with homologues of streptococcal species of the oral and oropharyngeal sites suggested that S. sanguinis PepO and CppA have independent ancestralities. Thus, this study showed that PepO and CppA are complement evasion proteins expressed by S. sanguinis in a strain-specific manner, which are required for multiple functions associated with cardiovascular virulence.


Asunto(s)
Células Endoteliales , Streptococcus sanguis , Humanos , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Virulencia , Células Endoteliales/metabolismo , Filogenia , Proteínas del Sistema Complemento , Proteínas Bacterianas/metabolismo
17.
Front Sports Act Living ; 5: 1209960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440876

RESUMEN

Introduction: To better understand the post-activation performance enhancement (PAPE) effect promoted by a plyometric conditioning activity (CA), the aim of this study was to investigate the temporal response of PAPE after a plyometric CA. Methods: Fourteen healthy and active adults visited the laboratory 3 times, with an interval of 7 days between each visit. On the first day they were familiarized with the countermovement jump (CMJ) test and plyometric CA. In the second and third visits, participants performed either plyometric CA or control (remaining seated) in a crossover design. The CMJ test was performed pre and 1-, 3-, 6-, and 9-min post the plyometric CA or control. The comparisons were performed using the repeated measure two-factor ANOVA and Bonferroni adjustment (significance level adopted P ≤ 0.05). Results: Time (P < 0.01), condition (P < 0.01), and interaction (P < 0.01) effects were reported for CMJ comparisons. For the control condition, CMJ increased at 3 min compared to pre (P = 0.03) and at 3 min compared to 1 min (P = 0.03). For the plyometric CA, CMJ increased at 1- (P < 0.01), 3- (P < 0.01), and 6-min (P = 0.02) compared to pre. For condition comparisons, CMJ was different at 1- (P < 0.01), 3- (P < 0.01), 6- (P < 0.01), and 9-min (P = 0.02). The Effect size of the comparisons of all moments compared to pre was null (d < 0.20) for control and small (d < 0.50) for plyometric CA. Discussion: It is possible to conclude that the plyometric CA promoted a PAPE effect for up to 9-min. Strength and conditioning coaches and practitioners may consider multiple sets of plyometric CA to produce immediate enhancement of power in the lower limbs.

18.
Molecules ; 28(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985492

RESUMEN

Beer is one of the most consumed beverages worldwide with unique organoleptic properties. Bitterness and astringency are well-known key features and, when perceived with high intensity, could lead to beer rejection. Most studies on beer astringency and bitterness use sensory assays and fail to study the molecular events that occur inside the oral cavity responsible for those perceptions. This work focused on deepening this knowledge based on the interaction of salivary proteins (SP) and beer phenolic compounds (PCs) and their effect toward these two sensory attributes. The astringency and bitterness of four different beers were assessed by a sensory panel and were coupled to the study of the SP changes and PC profile characterization of beers. The human SP content was measured before (basal) and after each beer intake using HPLC analysis. The beers' PC content and profile were determined using Folin-Ciocalteu and LC-MS spectrometry, respectively. The results revealed a positive correlation between PCs and astringency and bitterness and a negative correlation between SP changes and these taste modalities. Overall, the results revealed that beers with higher PC content (AAL and IPA) are more astringent and bitter than beers with a lower PC content (HL and SBO). The correlation results suggested that an increase in whole SP content, under stimulation, should decrease astringency and bitterness perception. No correlation was found between the changes in specific families of SP and astringency and bitterness perception.


Asunto(s)
Astringentes , Gusto , Humanos , Astringentes/análisis , Cerveza/análisis , Percepción del Gusto , Fenoles/análisis , Proteínas y Péptidos Salivales/análisis
19.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982237

RESUMEN

Large amounts of vine shoots are generated every year during vine pruning. This residue still presents many of the compounds found in the original plant, including low molecular weight phenolic compounds and structural compounds such as cellulose, hemicellulose, and lignin. For wine-producing regions, the challenge is to develop alternatives that will increase the value of this residue. This work proposes the full valorization of vine shoots, focusing on the extraction of lignin by mild acidolysis for the preparation of nanoparticles. The effect of the pretreatment solvents (ethanol/toluene, E/T, and water/ethanol, W/E), on the chemical and structural features of lignin, was evaluated. The chemical analysis suggests similar composition and structure regardless of the pretreatment solvent, although lignin isolated after pretreatment of biomass with E/T showed a higher content of proanthocyanidins (11%) compared with W/E (5%). Lignin nanoparticles (LNPs) presented an average size ranging from 130-200 nm and showed good stability for 30 days. Lignin and LNPs showed excellent antioxidant properties (half maximal inhibitory concentration, IC50 0.016-0.031 mg/mL) when compared to commercial antioxidants. In addition, extracts resulting from biomass pretreatment showed antioxidant activity, with W/E presenting a lower IC50 (0.170 mg/mL) than E/T (0.270 mg/mL), correlated with the higher polyphenol content of W/E, with (+)-catechin and (-)-epicatechin being the main compounds detected. Overall, this work shows that the pre-treatment of vine shoots with green solvents can yield (i) the production of high-purity lignin samples with antioxidant properties and (ii) phenolic-rich extracts, promoting the integral reuse of this byproduct and contributing to sustainability.


Asunto(s)
Antioxidantes , Lignina , Lignina/química , Antioxidantes/farmacología , Extractos Vegetales/química , Fenoles/análisis , Etanol , Solventes
20.
Foods ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36900569

RESUMEN

In the past few years, numerous studies have investigated the correlation between polyphenol intake and the prevention of several chronic diseases. Research regarding the global biological fate and bioactivity has been directed to extractable polyphenols that can be found in aqueous-organic extracts, obtained from plant-derived foods. Nevertheless, significant amounts of non-extractable polyphenols, closely associated with the plant cell wall matrix (namely with dietary fibers), are also delivered during digestion, although they are ignored in biological, nutritional, and epidemiological studies. These conjugates have gained the spotlight because they may exert their bioactivities for much longer than extractable polyphenols. Additionally, from a technological food perspective, polyphenols combined with dietary fibers have become increasingly interesting as they could be useful for the food industry to enhance technological functionalities. Non-extractable polyphenols include low molecular weight compounds such as phenolic acids and high molecular weight polymeric compounds such as proanthocyanidins and hydrolysable tannins. Studies concerning these conjugates are scarce, and usually refer to the compositional analysis of individual components rather than to the whole fraction. In this context, the knowledge and exploitation of non-extractable polyphenol-dietary fiber conjugates will be the focus of this review, aiming to access their potential nutritional and biological effect, together with their functional properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...