Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 15589, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973180

RESUMEN

P130CAS/BCAR1 belongs to the CAS family of adaptor proteins, with important regulatory roles in cell migration, cell cycle control, and apoptosis. Previously, we and others showed that P130CAS mediates VEGF-A and PDGF signalling in vitro, but its cardiovascular function in vivo remains relatively unexplored. We characterise here a novel deletion model of P130CAS in zebrafish. Using in vivo microscopy and transgenic vascular reporters, we observed that while bcar1-/- zebrafish showed no arterial angiogenic or heart defects during development, they strikingly failed to form the caudal vein plexus (CVP). Endothelial cells (ECs) within the CVP of bcar1-/- embryos produced fewer filopodial structures and did not detach efficiently from neighbouring cells, resulting in a significant reduction in ventral extension and overall CVP area. Mechanistically, we show that P130Cas mediates Bmp2b-induced ectopic angiogenic sprouting of ECs in the developing embryo and provide pharmacological evidence for a role of Src family kinases in CVP development.


Asunto(s)
Animales Modificados Genéticamente/fisiología , Embrión no Mamífero/fisiología , Neovascularización Fisiológica , Venas/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/embriología , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Embrión no Mamífero/citología , Venas/embriología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
2.
Ann Neurol ; 86(6): 832-843, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31610034

RESUMEN

OBJECTIVE: The Popeye domain containing 3 (POPDC3) gene encodes a membrane protein involved in cyclic adenosine monophosphate (cAMP) signaling. Besides gastric cancer, no disease association has been described. We describe a new muscular dystrophy associated with this gene. METHODS: We screened 1,500 patients with unclassified limb girdle weakness or hyperCKemia for pathogenic POPDC3 variants. Five patients carrying POPDC3 variants were examined by muscle magnetic resonance imaging (MRI), muscle biopsy, and cardiac examination. We performed functional analyses in a zebrafish popdc3 knockdown model and heterologous expression of the mutant proteins in Xenopus laevis oocytes to measure TREK-1 current. RESULTS: We identified homozygous POPDC3 missense variants (p.Leu155His, p.Leu217Phe, and p.Arg261Gln) in 5 patients from 3 ethnically distinct families. Variants affected highly conserved residues in the Popeye (p.Leu155 and p.Leu217) and carboxy-terminal (p.Arg261) domains. The variants were almost absent from control populations. Probands' muscle biopsies were dystrophic, and serum creatine kinase levels were 1,050 to 9,200U/l. Muscle weakness was proximal with adulthood onset in most patients and affected lower earlier than upper limbs. Muscle MRI revealed fat replacement of paraspinal and proximal leg muscles; cardiac investigations were unremarkable. Knockdown of popdc3 in zebrafish, using 2 different splice-site blocking morpholinos, resulted in larvae with tail curling and dystrophic muscle features. All 3 mutants cloned in Xenopus oocytes caused an aberrant modulation of the mechano-gated potassium channel, TREK-1. INTERPRETATION: Our findings point to an important role of POPDC3 for skeletal muscle function and suggest that pathogenic variants in POPDC3 are responsible for a novel type of autosomal recessive limb girdle muscular dystrophy. ANN NEUROL 2019;86:832-843.


Asunto(s)
Moléculas de Adhesión Celular/genética , Variación Genética/genética , Proteínas Musculares/genética , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/genética , Adulto , Animales , Moléculas de Adhesión Celular/química , Estudios de Cohortes , Femenino , Técnicas de Silenciamiento del Gen/métodos , Humanos , Masculino , Persona de Mediana Edad , Proteínas Musculares/química , Linaje , Estructura Secundaria de Proteína , Xenopus laevis , Pez Cebra
3.
J Cardiovasc Dev Dis ; 3(2)2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27347491

RESUMEN

The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins is rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (Dystrophin), compartmentalization (Caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (Dysferlin), or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggests that this family of cAMP-binding proteins probably serves multiple roles in striated muscle.

4.
Alcohol ; 47(2): 95-102, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23419393

RESUMEN

Ethanol has well described acute effects on motor function, and chronic alcoholism can damage the cerebellum, which is associated with motor coordination, as well as motor learning. Binge drinking is common among preadolescents and adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we analyzed the effects of periadolsecent/adolescent ethanol exposure on motor function in both male and female Sprague-Dawley rats. To simulate binge drinking, animals received an intraperitoneal injection of 25% (v/v) ethanol (3 g/kg) on postnatal days (PND) 25, 26, 29, 30, 33, 34, 37 and 38. On PND 42 and PND 61 animals were tested on their ability to traverse both square and round beams. There were no significant differences in the time to traverse the beams, or the amount of foot slips, between treated and untreated animals. On PND 48 and PND 62, animals were tested using a horizontal ladder walking apparatus. On PND 48 there were no differences in the ability of treated and untreated animals to traverse the ladder. On PND 62, there were no differences in the time to traverse the ladder, but ethanol treated animals had more foot slips than controls. On PND 43, we conducted footprint analysis of control and treated animals, which included measurements of stride length, paw overlap, and angle of foot placement. There was a significant difference in the angle of foot placement between treated and control animals, and this finding was significant for both male and female animals. There was also a significant overall difference in paw overlap between treatment groups. Although this effect was manifested in male animals there was no significant difference in females. These findings suggest that adolescent ethanol exposure can produce long-lasting effects on motor coordination, and that overall, effects are similar in males and females. In a second set of experiments, male rats received i.p. ethanol (3 g/kg) for 7 days (P31-37) or 4 days (P31,33,35,37). No significant differences were detected by footprint analysis when compared to control animals. However, ethanol treated animals had significantly less cerebellar Purkinje cells at 3 weeks after the last ethanol exposure. Altered motor function suggests a possible neurodegenerative effect in the cerebellum initiated by adolescent ethanol exposure, and may depend on the extent of exposure during the preadolescent and/or adolescent brain periods.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Etanol/administración & dosificación , Actividad Motora/efectos de los fármacos , Factores de Edad , Animales , Ataxia/inducido químicamente , Recuento de Células , Cerebelo/efectos de los fármacos , Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Femenino , Masculino , Actividad Motora/fisiología , Enfermedades Neurodegenerativas/inducido químicamente , Peritoneo/efectos de los fármacos , Células de Purkinje/efectos de los fármacos , Células de Purkinje/patología , Ratas , Ratas Sprague-Dawley , Factores Sexuales
5.
Circ Res ; 110(12): 1564-74, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22550138

RESUMEN

RATIONALE: Congenital heart malformations are a major cause of morbidity and mortality, especially in young children. Failure to establish normal left-right (L-R) asymmetry often results in cardiovascular malformations and other laterality defects of visceral organs. OBJECTIVE: To identify genetic mutations causing cardiac laterality defects. METHODS AND RESULTS: We performed a genome-wide linkage analysis in patients with cardiac laterality defects from a consanguineous family. The patients had combinations of defects that included dextrocardia, transposition of great arteries, double-outlet right ventricle, atrioventricular septal defects, and caval vein abnormalities. Sequencing of positional candidate genes identified mutations in NPHP4. We performed mutation analysis of NPHP4 in 146 unrelated patients with similar cardiac laterality defects. Forty-one percent of these patients also had laterality defects of the abdominal organs. We identified 8 additional missense variants that were absent or very rare in control subjects. To study the role of nphp4 in establishing L-R asymmetry, we used antisense morpholinos to knockdown nphp4 expression in zebrafish. Depletion of nphp4 disrupted L-R patterning as well as cardiac and gut laterality. Cardiac laterality defects were partially rescued by human NPHP4 mRNA, whereas mutant NPHP4 containing genetic variants found in patients failed to rescue. We show that nphp4 is involved in the formation of motile cilia in Kupffer's vesicle, which generate asymmetrical fluid flow necessary for normal L-R asymmetry. CONCLUSIONS: NPHP4 mutations are associated with cardiac laterality defects and heterotaxy. In zebrafish, nphp4 is essential for the development and function of Kupffer's vesicle cilia and is required for global L-R patterning.


Asunto(s)
Pleiotropía Genética/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Cardiopatías Congénitas/genética , Proteínas/genética , Secuencia de Aminoácidos , Animales , Estudios de Cohortes , Femenino , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/patología , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Pez Cebra
6.
Am J Hum Genet ; 82(4): 809-21, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18313022

RESUMEN

Autosomal-dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) causes sudden cardiac death and is characterized by clinical and genetic heterogeneity. Fifteen unrelated ARVC families with a disease-associated haplotype on chromosome 3p (ARVD5) were ascertained from a genetically isolated population. Identification of key recombination events reduced the disease region to a 2.36 Mb interval containing 20 annotated genes. Bidirectional resequencing showed one rare variant in transmembrane protein 43 (TMEM43 1073C-->T, S358L), was carried on all recombinant ARVD5 ancestral haplotypes from affected subjects and not found in population controls. The mutation occurs in a highly conserved transmembrane domain of TMEM43 and is predicted to be deleterious. Clinical outcomes in 257 affected and 151 unaffected subjects were compared, and penetrance was determined. We concluded that ARVC at locus ARVD5 is a lethal, fully penetrant, sex-influenced morbid disorder. Median life expectancy was 41 years in affected males compared to 71 years in affected females (relative risk 6.8, 95% CI 1.3-10.9). Heart failure was a late manifestation in survivors. Although little is known about the function of the TMEM43 gene, it contains a response element for PPAR gamma (an adipogenic transcription factor), which may explain the fibrofatty replacement of the myocardium, a characteristic pathological finding in ARVC.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Insuficiencia Cardíaca/genética , Proteínas de la Membrana/genética , Mutación Missense , Penetrancia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Displasia Ventricular Derecha Arritmogénica/complicaciones , Displasia Ventricular Derecha Arritmogénica/patología , Niño , Cromosomas Humanos Par 3/genética , Análisis Mutacional de ADN , Femenino , Pruebas Genéticas , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Humanos , Esperanza de Vida , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Datos de Secuencia Molecular , Miocardio/patología , Linaje , Mapeo Físico de Cromosoma , Conformación Proteica , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...