Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37630496

RESUMEN

The relationship between plants and associated soil microorganisms plays a major role in ecosystem functioning. Plant-bacteria interactions involve complex signaling pathways regulating various processes required by bacteria to adapt to their fluctuating environment. The establishment and maintenance of these interactions rely on the ability of the bacteria to sense and respond to biotic and abiotic environmental signals. In this context, MarR family transcriptional regulators can use these signals for transcriptional regulation, which is required to establish adapted responses. MarR-like transcriptional regulators are essential for the regulation of the specialized functions involved in plant-bacteria interactions in response to a wide range of molecules associated with the plant host. The conversion of environmental signals into changes in bacterial physiology and behavior allows the bacteria to colonize the plant and ensure a successful interaction. This review focuses on the mechanisms of plant-signal perception by MarR-like regulators, namely how they (i) allow bacteria to cope with the rhizosphere and plant endosphere, (ii) regulate the beneficial functions of Plant-Growth-Promoting Bacteria and (iii) regulate the virulence of phytopathogenic bacteria.

2.
Plant Cell Environ ; 45(10): 3100-3121, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781677

RESUMEN

Senescence determines plant organ lifespan depending on aging and environmental cues. During the endosymbiotic interaction with rhizobia, legume plants develop a specific organ, the root nodule, which houses nitrogen (N)-fixing bacteria. Unlike earlier processes of the legume-rhizobium interaction (nodule formation, N fixation), mechanisms controlling nodule senescence remain poorly understood. To identify nodule senescence-associated genes, we performed a dual plant-bacteria RNA sequencing approach on Medicago truncatula-Sinorhizobium meliloti nodules having initiated senescence either naturally (aging) or following an environmental trigger (nitrate treatment or salt stress). The resulting data allowed the identification of hundreds of plant and bacterial genes differentially regulated during nodule senescence, thus providing an unprecedented comprehensive resource of new candidate genes associated with this process. Remarkably, several plant and bacterial genes related to the cell cycle and stress responses were regulated in senescent nodules, including the rhizobial RpoE2-dependent general stress response. Analysis of selected core nodule senescence plant genes allowed showing that MtNAC969 and MtS40, both homologous to leaf senescence-associated genes, negatively regulate the transition between N fixation and senescence. In contrast, overexpression of a gene involved in the biosynthesis of cytokinins, well-known negative regulators of leaf senescence, may promote the transition from N fixation to senescence in nodules.


Asunto(s)
Medicago truncatula , Rhizobium , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Fijación del Nitrógeno/fisiología , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Rhizobium/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/genética , Transcriptoma/genética
3.
Biology (Basel) ; 11(6)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35741382

RESUMEN

Plants form beneficial symbioses with a wide variety of microorganisms. Among these, endophytes, arbuscular mycorrhizal fungi (AMF), and nitrogen-fixing rhizobia are some of the most studied and well understood symbiotic interactions. These symbiotic microorganisms promote plant nutrition and growth. In exchange, they receive the carbon and metabolites necessary for their development and multiplication. In addition to their role in plant growth and development, these microorganisms enhance host plant tolerance to a wide range of environmental stress. Multiple studies have shown that these microorganisms modulate the phytohormone metabolism in the host plant. Among the phytohormones involved in the plant defense response against biotic environment, salicylic acid (SA) plays an important role in activating plant defense. However, in addition to being a major actor in plant defense signaling against pathogens, SA has also been shown to be involved in plant-microbe symbiotic interactions. In this review, we summarize the impact of SA on the symbiotic interactions. In addition, we give an overview of the impact of the endophytes, AMF, and rhizobacteria on SA-mediated defense response against pathogens.

4.
Free Radic Biol Med ; 184: 185-195, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390454

RESUMEN

Reactive oxygen species such as hydrogen peroxide (H2O2) are key signaling molecules that control the setup and functioning of Rhizobium-legume symbiosis. This interaction results in the formation of a new organ, the root nodule, in which bacteria enter the host cells and differentiate into nitrogen (N2)-fixing bacteroids. The interaction between Sinorhizobium meliloti and Medicago truncatula is a genetic model to study N2-fixing symbiosis. In previous work, S. meliloti mutants impaired in the antioxidant defense, showed altered symbiotic properties, emphasizing the importance of redox-based regulation in the bacterial partner. However, direct measurements of S. meliloti intracellular redox state have never been performed. Here, we measured dynamic changes of intracellular H2O2 and glutathione redox potential by expressing roGFP2-Orp1 and Grx1-roGFP2 biosensors in S. meliloti. Kinetic analyses of redox changes under free-living conditions showed that these biosensors are suitable to monitor the bacterial redox state in real-time, after H2O2 challenge and in different genetic backgrounds. In planta, flow cytometry and confocal imaging experiments allowed the determination of sensor oxidation state in nodule bacteria. These cellular studies establish the existence of an oxidative shift in the redox status of S. meliloti during bacteroid differentiation. Our findings open up new possibilities for in vivo studies of redox dynamics during N2-fixing symbiosis.


Asunto(s)
Técnicas Biosensibles , Medicago truncatula , Sinorhizobium meliloti , Proteínas Bacterianas/genética , Peróxido de Hidrógeno , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Fijación del Nitrógeno , Oxidación-Reducción , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiosis/fisiología
5.
Antioxidants (Basel) ; 10(6)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070926

RESUMEN

Plants interact with a large number of microorganisms that greatly influence their growth and health. Among the beneficial microorganisms, rhizosphere bacteria known as Plant Growth Promoting Bacteria increase plant fitness by producing compounds such as phytohormones or by carrying out symbioses that enhance nutrient acquisition. Nitrogen-fixing bacteria, either as endophytes or as endosymbionts, specifically improve the growth and development of plants by supplying them with nitrogen, a key macro-element. Survival and proliferation of these bacteria require their adaptation to the rhizosphere and host plant, which are particular ecological environments. This adaptation highly depends on bacteria response to the Reactive Oxygen Species (ROS), associated to abiotic stresses or produced by host plants, which determine the outcome of the plant-bacteria interaction. This paper reviews the different antioxidant defense mechanisms identified in diazotrophic bacteria, focusing on their involvement in coping with the changing conditions encountered during interaction with plant partners.

6.
Proc Biol Sci ; 287(1934): 20201493, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32873201

RESUMEN

Legumes can meet their nitrogen requirements through root nodule symbiosis, which could also trigger plant systemic resistance against pests. The pea aphid Acyrthosiphon pisum, a legume pest, can harbour different facultative symbionts (FS) influencing various traits of their hosts. It is therefore worth determining if and how the symbionts of the plant and the aphid modulate their interaction. We used different pea aphid lines without FS or with a single one (Hamiltonella defensa, Regiella insecticola, Serratia symbiotica) to infest Medicago truncatula plants inoculated with Sinorhizobium meliloti (symbiotic nitrogen fixation, SNF) or supplemented with nitrate (non-inoculated, NI). The growth of SNF and NI plants was reduced by aphid infestation, while aphid weight (but not survival) was lowered on SNF compared to NI plants. Aphids strongly affected the plant nitrogen fixation depending on their symbiotic status, suggesting indirect relationships between aphid- and plant-associated microbes. Finally, all aphid lines triggered expression of Pathogenesis-Related Protein 1 (PR1) and Proteinase Inhibitor (PI), respective markers for salicylic and jasmonic pathways, in SNF plants, compared to only PR1 in NI plants. We demonstrate that the plant symbiotic status influences plant-aphid interactions while that of the aphid can modulate the amplitude of the plant's defence response.


Asunto(s)
Áfidos/fisiología , Medicago truncatula/fisiología , Fijación del Nitrógeno/fisiología , Animales , Nitratos , Nitrógeno/metabolismo , Ácido Salicílico , Serratia , Simbiosis
7.
Biosci Rep ; 40(10)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32970113

RESUMEN

Sinorhizobium meliloti is a nitrogen-fixing bacterium forming symbiotic nodules with the legume Medicago truncatula. S. meliloti possesses two BolA-like proteins (BolA and YrbA), the function of which is unknown. In organisms where BolA proteins and monothiol glutaredoxins (Grxs) are present, they contribute to the regulation of iron homeostasis by bridging a [2Fe-2S] cluster into heterodimers. A role in the maturation of iron-sulfur (Fe-S) proteins is also attributed to both proteins. In the present study, we have performed a structure-function analysis of SmYrbA showing that it coordinates diverse divalent metal ions (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) using His32 and His67 residues, that are also used for Fe-S cluster binding in BolA-Grx heterodimers. It also possesses the capacity to form heterodimers with the sole monothiol glutaredoxin (SmGrx2) present in this species. Using cellular approaches analyzing the metal tolerance of S. meliloti mutant strains inactivated in the yrbA and/or bolA genes, we provide evidence for a connection of YrbA with the regulation of iron homeostasis. The mild defects in M. truncatula nodulation reported for the yrbA bolA mutant as compared with the stronger defects in nodule development previously observed for a grx2 mutant suggest functions independent of SmGrx2. These results help in clarifying the physiological role of BolA-type proteins in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cationes Bivalentes/metabolismo , Metales/metabolismo , Sinorhizobium meliloti/metabolismo , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dicroismo Circular , Secuencia Conservada/genética , Histidina/genética , Histidina/metabolismo , Medicago truncatula/microbiología , Sinorhizobium meliloti/genética , Relación Estructura-Actividad
8.
Front Plant Sci ; 11: 137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194584

RESUMEN

Under nitrogen-limiting conditions, legumes are able to interact symbiotically with bacteria of the Rhizobiaceae family. This interaction gives rise to a new organ, named a root nodule. Root nodules are characterized by an increased glutathione (GSH) and homoglutathione (hGSH) content compared to roots. These low molecular thiols are very important in the biological nitrogen fixation. In order to characterize the modification of nodule activity induced by the microsymbiont glutathione deficiency, physiological, biochemical, and gene expression modifications were analyzed in nodules after the inoculation of Medicago truncatula with the SmgshB mutant of Sinorhizobium meliloti which is deficient in GSH production. The decline in nitrogen fixation efficiency was correlated to the reduction in plant shoot biomass. Flow cytometry analysis showed that SmgshB bacteroids present a higher DNA content than free living bacteria. Live/dead microscopic analysis showed an early bacteroid degradation in SmgshB nodules compared to control nodules which is correlated to a lower bacteroid content at 20 dpi. Finally, the expression of two marker genes involved in nitrogen fixation metabolism, Leghemoglobin and Nodule Cysteine Rich Peptide 001, decreased significantly in mutant nodules at 20 dpi. In contrast, the expression of two marker genes involved in the nodule senescence, Cysteine Protease 6 and Purple Acid Protease, increased significantly in mutant nodules at 10 dpi strengthening the idea that an early senescence process occurs in SmgshB nodules. In conclusion, our results showed that bacterial GSH deficiency does not impair bacterial differentiation but induces an early nodule senescence.

9.
Front Plant Sci ; 10: 1496, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850013

RESUMEN

The interaction between legumes and bacteria of rhizobia type results in a beneficial symbiotic relationship characterized by the formation of new root organs, called nodules. Within these nodules the bacteria, released in plant cells, differentiate into bacteroids and fix atmospheric nitrogen through the nitrogenase activity. This mutualistic interaction has evolved sophisticated signaling networks to allow rhizobia entry, colonization, bacteroid differentiation and persistence in nodules. Nodule cysteine rich (NCR) peptides, reactive oxygen species (ROS), reactive nitrogen species (RNS), and toxin-antitoxin (TA) modules produced by the host plants or bacterial microsymbionts have a major role in the control of the symbiotic interaction. These molecules described as weapons in pathogenic interactions have evolved to participate to the intracellular bacteroid accommodation by escaping control of plant innate immunity and adapt the functioning of the nitrogen-fixation to environmental signalling cues.

10.
J Exp Bot ; 70(17): 4505-4520, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30968126

RESUMEN

Interactions between legumes and rhizobia lead to the establishment of a symbiotic relationship characterized by the formation of a new organ, the nodule, which facilitates the fixation of atmospheric nitrogen (N2) by nitrogenase through the creation of a hypoxic environment. Significant amounts of nitric oxide (NO) accumulate at different stages of nodule development, suggesting that NO performs specific signaling and/or metabolic functions during symbiosis. NO, which regulates nodule gene expression, accumulates to high levels in hypoxic nodules. NO accumulation is considered to assist energy metabolism within the hypoxic environment of the nodule via a phytoglobin-NO-mediated respiration process. NO is a potent inhibitor of the activity of nitrogenase and other plant and bacterial enzymes, acting as a developmental signal in the induction of nodule senescence. Hence, key questions concern the relative importance of the signaling and metabolic functions of NO versus its toxic action and how NO levels are regulated to be compatible with nitrogen fixation functions. This review analyses these paradoxical roles of NO at various stages of symbiosis, and highlights the role of plant phytoglobins and bacterial hemoproteins in the control of NO accumulation.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Óxido Nítrico/metabolismo , Fijación del Nitrógeno , Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Transducción de Señal , Bacterias/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis
11.
Antioxidants (Basel) ; 7(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563061

RESUMEN

Leguminous plants can form a symbiotic relationship with Rhizobium bacteria, during which plants provide bacteria with carbohydrates and an environment appropriate to their metabolism, in return for fixed atmospheric nitrogen. The symbiotic interaction leads to the formation of a new organ, the root nodule, where a coordinated differentiation of plant cells and bacteria occurs. The establishment and functioning of nitrogen-fixing symbiosis involves a redox control important for both the plant-bacteria crosstalk and the regulation of nodule metabolism. In this review, we discuss the involvement of thioredoxin and glutaredoxin systems in the two symbiotic partners during symbiosis. The crucial role of glutathione in redox balance and S-metabolism is presented. We also highlight the specific role of some thioredoxin and glutaredoxin systems in bacterial differentiation. Transcriptomics data concerning genes encoding components and targets of thioredoxin and glutaredoxin systems in connection with the developmental step of the nodule are also considered in the model system Medicago truncatula⁻Sinorhizobium meliloti.

12.
PLoS One ; 12(12): e0190284, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29281721

RESUMEN

Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD), Luz d'Otonio (LO) and Reina Mora (RM) to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity). A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase) are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes.


Asunto(s)
Adaptación Fisiológica , Fijación del Nitrógeno , Vicia faba/fisiología , Agua , Genotipo , Oxidación-Reducción , Fotosíntesis , Vicia faba/genética , Vicia faba/crecimiento & desarrollo , Vicia faba/metabolismo
13.
Curr Biol ; 27(2): 250-256, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28017611

RESUMEN

Legumes associate with rhizobia to form nitrogen (N2)-fixing nodules, which is important for plant fitness [1, 2]. Medicago truncatula controls the terminal differentiation of Sinorhizobium meliloti into N2-fixing bacteroids by producing defensin-like nodule-specific cysteine-rich peptides (NCRs) [3, 4]. The redox state of NCRs influences some biological activities in free-living bacteria, but the relevance of redox regulation of NCRs in planta is unknown [5, 6], although redox regulation plays a crucial role in symbiotic nitrogen fixation [7, 8]. Two thioredoxins (Trx), Trx s1 and s2, define a new type of Trx and are expressed principally in nodules [9]. Here, we show that there are four Trx s genes, two of which, Trx s1 and s3, are induced in the nodule infection zone where bacterial differentiation occurs. Trx s1 is targeted to the symbiosomes, the N2-fixing organelles. Trx s1 interacted with NCR247 and NCR335 and increased the cytotoxic effect of NCR335 in S. meliloti. We show that Trx s silencing impairs bacteroid growth and endoreduplication, two features of terminal bacteroid differentiation, and that the ectopic expression of Trx s1 in S. meliloti partially complements the silencing phenotype. Thus, our findings show that Trx s1 is targeted to the bacterial endosymbiont, where it controls NCR activity and bacteroid terminal differentiation. Similarly, Trxs are critical for the activation of defensins produced against infectious microbes in mammalian hosts. Therefore, our results suggest the Trx-mediated regulation of host peptides as a conserved mechanism among symbiotic and pathogenic interactions.


Asunto(s)
Medicago truncatula/crecimiento & desarrollo , Bacterias Fijadoras de Nitrógeno/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Sinorhizobium meliloti/crecimiento & desarrollo , Tiorredoxinas/antagonistas & inhibidores , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/microbiología , Bacterias Fijadoras de Nitrógeno/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Sinorhizobium meliloti/efectos de los fármacos , Simbiosis
14.
Plant Sci ; 232: 77-85, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25617326

RESUMEN

Root-knot nematodes are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, these nematodes induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells (GCs). These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. We analyzed the modifications of water status, ionic content and accumulation of metabolites in development and mature galls induced by Meloidogyne incognita and in uninfected roots of Medicago truncatula plants. Water potential and osmotic pressure are significantly modified in mature galls compared to developing galls and control roots. Ionic content is significantly modified in galls compared to roots. Principal component analyses of metabolite content showed that mature gall metabolism is significantly modified compared to developing gall metabolism. The most striking differences were the three-fold increase of trehalose content associated to the five-fold diminution in glucose concentration in mature galls. Gene expression analysis showed that trehalose accumulation was, at least, partially linked to a significantly lower expression of the trehalase gene in mature galls. Our results point to significant modifications of gall physiology during maturation.


Asunto(s)
Interacciones Huésped-Patógeno , Medicago truncatula/parasitología , Tylenchoidea/fisiología , Animales , Medicago truncatula/metabolismo , Medicago truncatula/fisiología , Resonancia Magnética Nuclear Biomolecular , Presión Osmótica , Raíces de Plantas/parasitología , Análisis de Componente Principal
15.
Biochim Biophys Acta ; 1850(8): 1469-78, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25433163

RESUMEN

BACKGROUND: Nitrogen-fixing symbiosis between Rhizobium bacteria and legumes leads to the formation of a new organ, the root nodule. The development of the nodule requires the differentiation of plant root cells to welcome the endosymbiotic bacterial partner. This development includes the formation of an efficient vascular tissue which allows metabolic exchanges between the root and the nodule, the formation of a barrier to oxygen diffusion necessary for the bacterial nitrogenase activity and the enlargement of cells in the infection zone to support the large bacterial population. Inside the plant cell, the bacteria differentiate into bacteroids which are able to reduce atmospheric nitrogen to ammonia needed for plant growth in exchange for carbon sources. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. SCOPE OF THE REVIEW: Nodule functioning requires a tight regulation of the development of plant cells and bacteria. The importance of redox control in nodule development and N-fixation is discussed in this review. The involvement of reactive oxygen and nitrogen species and the importance of the antioxidant defense are analyzed. MAJOR CONCLUSIONS: Plant differentiation and bacterial differentiation are controlled by reactive oxygen and nitrogen species, enzymes involved in the antioxidant defense and antioxidant compounds. GENERAL SIGNIFICANCE: The establishment and functioning of nitrogen-fixing symbiosis involve a redox control important for both the plant-bacteria crosstalk and the consideration of environmental parameters. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Fijación del Nitrógeno/fisiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis/fisiología , Fabaceae/citología , Fabaceae/metabolismo , Fabaceae/microbiología , Interacciones Huésped-Patógeno , Oxidación-Reducción , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiología
16.
Plant Cell Environ ; 37(3): 658-69, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23961805

RESUMEN

PRAF proteins are present in all plants, but their functions remain unclear. We investigated the role of one member of the PRAF family, MtZR1, on the development of roots and nitrogen-fixing nodules in Medicago truncatula. We found that MtZR1 was expressed in all M. truncatula organs. Spatiotemporal analysis showed that MtZR1 expression in M. truncatula roots was mostly limited to the root meristem and the vascular bundles of mature nodules. MtZR1 expression in root nodules was down-regulated in response to various abiotic stresses known to affect nitrogen fixation efficiency. The down-regulation of MtZR1 expression by RNA interference in transgenic roots decreased root growth and impaired nodule development and function. MtZR1 overexpression resulted in longer roots and significant changes to nodule development. Our data thus indicate that MtZR1 is involved in the development of roots and nodules. To our knowledge, this work provides the first in vivo experimental evidence of a biological role for a typical PRAF protein in plants.


Asunto(s)
Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Familia de Multigenes , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis , Núcleo Celular/metabolismo , Citosol/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Medicago truncatula/genética , Meristema/genética , Fijación del Nitrógeno/genética , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/genética , Haz Vascular de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Nódulos de las Raíces de las Plantas/genética , Especificidad de la Especie , Estrés Fisiológico/genética , Fracciones Subcelulares/metabolismo , Simbiosis/genética , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Genética
17.
Front Plant Sci ; 4: 376, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24133498

RESUMEN

In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N 2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS) so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed us to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, that their spatio-temporally distribution is correlated with the corresponding (homo)glutathione synthetase activities, and that they are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume-rhizobial symbiosis.

18.
Free Radic Biol Med ; 65: 724-730, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23912161

RESUMEN

Glutathione (GSH) is a major antioxidant molecule in plants. It is involved in regulating plant development and responses to the abiotic and biotic environment. In recent years, numerous reports have clarified the molecular processes involving GSH in plant-microbe interactions. In this review, we summarize recent studies, highlighting the roles of GSH in interactions between plants and microbes, whether pathogenic or beneficial to plants.


Asunto(s)
Glutatión/inmunología , Inmunidad de la Planta/inmunología , Plantas/inmunología , Plantas/microbiología , Antioxidantes/metabolismo , Ambiente
19.
New Phytol ; 198(1): 179-189, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23347006

RESUMEN

Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Peróxido de Hidrógeno/farmacología , Medicago truncatula/genética , Medicago truncatula/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis/genética , Lipopolisacáridos/farmacología , Medicago truncatula/efectos de los fármacos , Medicago truncatula/enzimología , MicroARNs/genética , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos Onio/farmacología , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/efectos de los fármacos , Sinorhizobium meliloti/genética , Simbiosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
20.
Environ Microbiol ; 15(3): 795-810, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22891731

RESUMEN

Legumes interact symbiotically with bacteria of the Rhizobiaceae to form nitrogen-fixing root nodules. We investigated the contribution of the three glutaredoxin (Grx)-encoding genes present in the Sinorhizobium meliloti genome to this symbiosis. SmGRX1 (CGYC active site) and SmGRX3 (CPYG) recombinant proteins displayed deglutathionylation activity in the 2-hydroethyldisulfide assay, whereas SmGRX2 (CGFS) did not. Mutation of SmGRX3 did not affect S. meliloti growth or symbiotic capacities. In contrast, SmGRX1 and SmGRX2 mutations decreased the growth of free-living bacteria and the nitrogen fixation capacity of bacteroids. Mutation of SmGRX1 led to nodule abortion and an absence of bacteroid differentiation, whereas SmGRX2 mutation decreased nodule development without modifying bacteroid development. The higher sensitivity of the Smgrx1 mutant strain as compared with wild-type strain to oxidative stress was associated with larger amounts of glutathionylated proteins. The Smgrx2 mutant strain displayed significantly lower levels of activity than the wild type for two iron-sulfur-containing enzymes, aconitase and succinate dehydrogenase. This lower level of activity could be associated with deregulation of the transcriptional activity of the RirA iron regulator and higher intracellular iron content. Thus, two S. meliloti Grx proteins are essential for symbiotic nitrogen fixation, playing independent roles in bacterial differentiation and the regulation of iron metabolism.


Asunto(s)
Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Hierro/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiosis , Fabaceae/microbiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Mutación , Fijación del Nitrógeno/genética , Filogenia , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/clasificación , Sinorhizobium meliloti/crecimiento & desarrollo , Succinato Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...